The Viking Gas Exchange Experiment results from Chryse and Utopia surface samples

Immediate gas changes occurred when untreated Martian surface samples were humidified and/or wet by an aqueous nutrient medium in the Viking lander gas exchange experiment. The evolutions of N2, CO2, and Ar are mainly associated with soil surface desorption caused by water vapor, while O2 evolution is primarily associated with decomposition of Superoxides inferred to be present on Mars. On recharges with fresh nutrient and test gas, only CO2 was given off, and its rate of evolution decreased with each recharge. This CO2 evolution is thought to come from the oxidation of organics present in the nutrient by γ Fe2O3 in the surface samples. Atmospheric analyses were also performed at both sites. The mean atmospheric composition from four analyses is N2, 2.3%; O2, ≤0.15%; Ar, 1.5%; and CO2, 96.2%.

[1]  G. C. Carle,et al.  Preliminary findings of the Viking gas exchange experiment and a model for Martian surface chemistry , 1977, Nature.

[2]  A. Nier,et al.  Composition and Structure of the Martian Upper Atmosphere: Analysis of Results from Viking , 1976, Science.

[3]  F. S. Brown,et al.  The Viking Biological Investigation: Preliminary Results , 1976, Science.

[4]  K. Biemann,et al.  Composition of the Atmosphere at the Surface of Mars: Detection of Argon-36 and Preliminary Analysis , 1976, Science.

[5]  Joshua Lederberg,et al.  The Viking Mission search for life on Mars , 1976, Nature.

[6]  Vance I. Oyama,et al.  The Gas Exchange Experiment for life detection - The Viking Mars Lander. , 1972 .

[7]  A. Krause,et al.  Über den katalytischen H2O2-Zerfall und die peroxydatische HCOOH-Oxydation an röntgenamorphem Eisen(III)-hydroxyd in Abhängigkeit von dessen Korngröße. Zugleich ein Beitrag zur Kenntnis des Mechanismus dieser Reaktionen , 1959 .

[8]  J. Margrave,et al.  Reaction Rates in Analytical Determination of Some Inorganic Peroxides and Superoxides , 1957 .

[9]  J. Margrave,et al.  The Heats of Formation of Na2O2, NaO2 and KO2. , 1956 .

[10]  C. R. Dawson,et al.  On the Mechanism of the Ascorbic Acid—Ascorbic Acid Oxidase Reaction. The Hydrogen Peroxide Question , 1942 .

[11]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[12]  A. Krause,et al.  „Peroxydase”︁‐Eigenschaften des amorphen Eisen (III)‐hydroxyds. Die katalysierte Oxydation der Ameisensäure mit H2O2. Amorphe und krystallisierte Oxydhydrate und Oxyde (XXXI. Mitteil.) , 1937 .

[13]  V. Oyama,et al.  Search for viable organisms in lunar samples: Gas changes over Apollo 14 fines wet by aqueous media , 1972 .

[14]  Vance I. Oyama,et al.  Search for viable organisms in lunar samples - Further biological studies on Apollo 11 core, Apollo 12 bulk, and Apollo 12 core samples , 1971 .

[15]  V. Oyama,et al.  Integration of experiments for the detection of biological activity in extraterrestrial exploration. , 1970, Life sciences and space research.