A second order monotone upwind scheme

We analyze a special finite difference scheme of upwind type for an ordinary singularly perturbed nonlinear boundary value problem. In particular we prove the uniqueness and monotone dependence upon the right hand sides of the discrete solutions and the second order accuracy in the global domain.ZusammenfassungWir analysieren ein spezielles upwind-Differenzenschema für ein gewöhnliches, nichtlineares, singulär gestörtes Randwertproblem. Es wird insbesondere gezeigt, daß die Lösung des diskreten Problems eindeutig ist sowie monoton von der rechten Seite abhängt. Im globalen Gebiet ist die Methode von zweiter Ordnung.

[1]  Jens Lorenz,et al.  Nonlinear boundary value problems with turning points and properties of difference schemes , 1982 .

[2]  Wil H. A. Schilders,et al.  Uniform Numerical Methods for Problems with Initial and Boundary Layers , 1980 .

[3]  Richard Weiss An analysis of the box and trapezoidal schemes for linear singularly perturbed boundary value problems , 1984 .

[4]  R. Bruce Kellogg,et al.  A priori estimates and analysis of a numerical method for a turning point problem , 1984 .

[5]  K. Niijima A uniformly convergent difference scheme for a semilinear singular perturbation problem , 1984 .

[6]  Alan E. Berger,et al.  An analysis of a uniformly accurate difference method for a singular perturbation problem , 1981 .

[7]  J. Lorenz,et al.  Zur Inversmonotonie diskreter Probleme , 1977 .

[8]  Stanley Osher,et al.  Monotone Difference Schemes for Singular Perturbation Problems , 1982 .

[9]  Jens Lorenz,et al.  Nonlinear singular perturbation problems and the Engquist-Osher difference scheme , 1981 .

[10]  Singularly perturbed finite element methods , 1984 .

[11]  Jens Lorenz Numerical solution of a singular perturbation problem with turning points , 1983 .

[12]  Stanley Osher,et al.  Nonlinear Singular Perturbation Problems and One Sided Difference Schemes , 1981 .

[13]  Herbert Goering,et al.  Singularly perturbed differential equations , 1983 .

[14]  Stability and Consistency Analysis of Difference Methods for Singular Perturbation Problems , 1981 .

[15]  Alan E. Berger,et al.  Generalized OCI schemes for boundary layer problems , 1980 .

[16]  S. Leventhal An Operator Compact Implicit Method of Exponential Type , 1982 .

[17]  L. Tobiska Diskretisierungsverfahren zur Lösung singulär gestörter Randwertprobleme , 1983 .