EFFECT OF ALGORITHM PARAMETERS ON NUMERICAL PERFORMANCE OF VARIABLE METRIC ACCEPTABLE POINT ALGORITHMS (AS REPRESENTED BY BFGS-ARMIJO)
暂无分享,去创建一个
[1] L. Nazareth. A conjugate direction algorithm without line searches , 1977 .
[2] Elijah Polak,et al. Computational methods in optimization , 1971 .
[3] M. C. Biggs. Minimization Algorithms Making Use of Non-quadratic Properties of the Objective Function , 1971 .
[4] J. F. Price,et al. An effective algorithm for minimization , 1967 .
[5] H. H. Rosenbrock,et al. An Automatic Method for Finding the Greatest or Least Value of a Function , 1960, Comput. J..
[6] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[7] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[8] J. J. Moré,et al. Quasi-Newton Methods, Motivation and Theory , 1974 .
[9] Robert Hooke,et al. `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.
[10] M. A. Townsend,et al. A generalized direct search acceptable-point technique for use with descent-type multivariate algorithms , 1980 .
[11] L. Armijo. Minimization of functions having Lipschitz continuous first partial derivatives. , 1966 .
[12] D. Shanno,et al. Numerical comparison of several variable-metric algorithms , 1978 .
[13] L. C. W. Dixon. Conjugate Directions without Linear Searches , 1973 .
[14] Roger Fletcher,et al. A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..
[15] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 1. General Considerations , 1970 .