Particle-localized AC and DC manipulation and electrokinetics

Colloidal particles suspended in water respond to direct (DC) or alternating current (AC) fields in a variety of ways, including directional motion along or across the field direction, field-gradient dependent response and induced particle–particle interaction. We review here some of these effects and their applications in new techniques for particle manipulation and assembly, making of novel biomaterials and designing of new self-propelling microdevices. The coupling of the counterionic layer mobility, fluid flows and the resulting particle motion are the basis not only of the classic electrophoretic effects, but also of the recent developments in AC electrohydrodynamics and induced charge electrophoresis of asymmetric particles. We also discuss how dielectrophoresis (particle interaction with external AC field gradients), could be used to manipulate and assemble objects on any size scale. We discuss the interactions leading to the assembly of such structures, ways to simulate the dynamics of the process and the effect of particle size and conductivity on the type of structure obtained. Finally, we demonstrate how an additional level of complexity can be engineered to turn miniature semiconductor diodes into prototypes of self-propelling micromachines and micropumps. The diodes suspended in water propel themselves electro-osmotically when a uniform alternating electric field is applied across the container. Semiconductor diodes embedded in channel walls could serve as distributed microfluidic pumps and mixers powered by a global external field.

[1]  N. Manaresi,et al.  A CMOS chip for individual cell manipulation and detection , 2003, 2003 IEEE International Solid-State Circuits Conference, 2003. Digest of Technical Papers. ISSCC..

[2]  Sumit Gangwal,et al.  Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[3]  Lance C. Kam,et al.  Patterning Hybrid Surfaces of Proteins and Supported Lipid Bilayers , 2000 .

[4]  V. Studer,et al.  Experimental observation of induced-charge electro-osmosis around a metal wire in a microchannel , 2005 .

[5]  H. Kawaguchi,et al.  Janus particles with a functional gold surface for control of surface plasmon resonance , 2006 .

[6]  M. Stratford Yeast flocculation: Calcium specificity , 1989 .

[7]  A. Spradling,et al.  Stem cells find their niche , 2001, Nature.

[8]  R. Misra,et al.  Biomaterials , 2008 .

[9]  G. Di Francia,et al.  Palladium Nanowires Assembly by Dielectrophoresis Investigated as Hydrogen Sensors , 2008, IEEE Transactions on Nanotechnology.

[10]  Aaron S. Keys,et al.  Self-assembly of patchy particles into diamond structures through molecular mimicry. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[11]  Y. Huang,et al.  Introducing dielectrophoresis as a new force field for field-flow fractionation. , 1997, Biophysical journal.

[12]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[13]  Changxin Chen,et al.  Theoretical Simulation on the Assembly of Carbon Nanotubes Between Electrodes by AC Dielectrophoresis , 2008, Nanoscale research letters.

[14]  Jeffrey N. Anker,et al.  Microrheology with modulated optical nanoprobes (MOONs) , 2005 .

[15]  F. Ligler,et al.  New approach to producing patterned biomolecular assemblies , 1992 .

[16]  Shah,et al.  Electrochemical principles for active control of liquids on submillimeter scales , 1999, Science.

[17]  Charles T. Campbell,et al.  Protein contact printing for a surface plasmon resonance biosensor with on-chip referencing , 2001 .

[18]  D. C. Henry The cataphoresis of suspended particles. Part I.—The equation of cataphoresis , 1931 .

[19]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[20]  Castellanos,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  A. Rathore,et al.  Capillary electrochromatography: theories on electroosmotic flow in porous media. , 1997, Journal of chromatography. A.

[22]  S. P. Fodor,et al.  Light-directed, spatially addressable parallel chemical synthesis. , 1991, Science.

[23]  D S Clague,et al.  Dielectrophoretic manipulation of macromolecules: the electric field. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Ronald Pethig,et al.  Selective dielectrophoretic confinement of bioparticles in potential energy wells , 1993 .

[25]  M. Bazant,et al.  Breaking symmetries in induced-charge electro-osmosis and electrophoresis , 2005, Journal of Fluid Mechanics.

[26]  S. Asher,et al.  Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials , 1997, Nature.

[27]  T. Ihalainen,et al.  Dielectrophoresis of nanoscale double-stranded DNA and humidity effects on its electrical conductivity , 2005, cond-mat/0510820.

[28]  H. A. Pohl The Motion and Precipitation of Suspensoids in Divergent Electric Fields , 1951 .

[29]  R. Pethig,et al.  Transverse dipolar chaining in binary suspensions induced by rf fields , 1999 .

[30]  M. Washizu Electrostatic actuation of liquid droplets for micro-reactor applications , 1997 .

[31]  M. Heller,et al.  Dielectrophoretic cell separation and gene expression profiling on microelectronic chip arrays. , 2002, Analytical chemistry.

[32]  S. Cho,et al.  Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits , 2003 .

[33]  C. Mirkin,et al.  Array-Based Electrical Detection of DNA with Nanoparticle Probes , 2002, Science.

[34]  A. Rathore,et al.  Electroosmotic Mobility and Conductivity in Microchannels , 2003 .

[35]  O. Velev,et al.  Dielectrophoretic assembly of oriented and switchable two-dimensional photonic crystals , 2003 .

[36]  Direct assembly of nanoparticles for large-scale fabrication of nanodevices and structures , 2008 .

[37]  Yong-Kweon Kim,et al.  Experimental and theoretical analysis of DEP-based particle deflection for the separation of protein-bound particles , 2008 .

[38]  Thomas B. Jones,et al.  Multipolar dielectrophoretic force calculation , 1994 .

[39]  G M Whitesides,et al.  Patterning cells and their environments using multiple laminar fluid flows in capillary networks. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Sharon C. Glotzer,et al.  Self-assembly of anisotropic tethered nanoparticle shape amphiphiles , 2005 .

[41]  T. Jones Liquid dielectrophoresis on the microscale , 2001 .

[42]  O. Velev,et al.  On-chip manipulation of free droplets , 2003, Nature.

[43]  Björn Lindman,et al.  Surface and colloid science , 2001 .

[44]  Daniel G. Anderson,et al.  Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells , 2004, Nature Biotechnology.

[45]  Ciprian Iliescu,et al.  Fabrication of a dielectrophoretic chip with 3D silicon electrodes , 2005 .

[46]  Fabrication of nanometer-spaced electrodes using gold nanoparticles , 2002, cond-mat/0211213.

[47]  S. Sankaran,et al.  Electric-field-induced pattern formation in colloidal dispersions , 1995, Nature.

[48]  Joel Voldman,et al.  Assembly of metal nanoparticles into nanogaps. , 2007, Small.

[49]  大房 健 基礎講座 電気泳動(Electrophoresis) , 2005 .

[50]  Paul H. Bessette,et al.  Marker-specific sorting of rare cells using dielectrophoresis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  S. Boxer,et al.  Micropatterning Fluid Lipid Bilayers on Solid Supports , 1997, Science.

[52]  T. Jones,et al.  Dielectrophoretic liquid actuation and nanodroplet formation , 2001 .

[53]  Induced-charge electrophoresis of nonspherical particles , 2005 .

[54]  George M. Whitesides,et al.  Three-dimensional self-assembly of millimetre-scale components , 1997, Nature.

[55]  M. Bazant,et al.  Induced-charge electrokinetic phenomena: theory and microfluidic applications. , 2003, Physical review letters.

[56]  Junya Suehiro,et al.  Dielectrophoretic filter for separation and recovery of biological cells in water , 2003 .

[57]  M. Bazant,et al.  Induced-charge electrophoresis of metallodielectric particles. , 2007, Physical review letters.

[58]  Gwo-Bin Lee,et al.  An optically induced cell lysis device using dielectrophoresis , 2009 .

[59]  Hsueh-Chia Chang,et al.  STATIC AND SPONTANEOUS ELECTROWETTING , 2005 .

[60]  O. Velev,et al.  Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[61]  E Marani,et al.  Viability of dielectrophoretically trapped neural cortical cells in culture , 2001, Journal of Neuroscience Methods.

[62]  Sonia Grego,et al.  An AC electrokinetic technique for collection and concentration of particles and cells on patterned electrodes. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[63]  E. Dorn Ueber die Fortführung der Electricität durch strömendes Wasser in Röhren und verwandte Erscheinungen , 1880 .

[64]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[65]  Bartosz A. Grzybowski,et al.  Self-assembly of polymeric microspheres of complex internal structures , 2004 .

[66]  O. Velev,et al.  On-chip micromanipulation and assembly of colloidal particles by electric fields. , 2006, Soft matter.

[67]  Tien,et al.  Design and self-assembly of open, regular, 3D mesostructures , 1999, Science.

[68]  M. V. Rao,et al.  Dielectrophoretic capture of mammalian cells using transparent indium tin oxide electrodes in microfluidic systems , 2008, Electrophoresis.

[69]  O. Velev Assembly of Electrically Functional Microstructures from Colloidal Particles , 2004 .

[70]  James E. Martin,et al.  STRUCTURE AND DYNAMICS OF ELECTRORHEOLOGICAL FLUIDS , 1998 .

[71]  Eric F Darve,et al.  Hydrodynamic interactions in the induced-charge electrophoresis of colloidal rod dispersions , 2005, Journal of Fluid Mechanics.

[72]  B Wagner,et al.  Levitation, holding, and rotation of cells within traps made by high-frequency fields. , 1992, Biochimica et biophysica acta.

[73]  Vincent M. Rotello,et al.  Self-assembly of nanoparticles into structured spherical and network aggregates , 2000, Nature.

[74]  A. Ajdari,et al.  Electrically induced flows in the vicinity of a dielectric stripe on a conducting plane , 2002, The European physical journal. E, Soft matter.

[75]  Ronald Pethig,et al.  Theoretical and experimental investigations of the interdependence of the dielectric, dielectrophoretic and electrorotational behaviour of colloidal particles , 1993 .

[76]  J. Storhoff,et al.  A DNA-based method for rationally assembling nanoparticles into macroscopic materials , 1996, Nature.

[77]  O. Velev,et al.  Evaporation-induced particle microseparations inside droplets floating on a chip. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[78]  O. Velev,et al.  Remotely powered self-propelling particles and micropumps based on miniature diodes. , 2007, Nature materials.

[79]  Thomas B. Jones,et al.  Size-selective deposition of particles combining liquid and particulate dielectrophoresis , 2005 .

[80]  E. Furst,et al.  Polarization and interactions of colloidal particles in ac electric fields. , 2008, The Journal of chemical physics.

[81]  S. Glotzer,et al.  Anisotropy of building blocks and their assembly into complex structures. , 2007, Nature materials.

[82]  Joonwon Kim,et al.  Electrostatic actuation of microscale liquid-metal droplets , 2002 .

[83]  Peter R. C. Gascoyne,et al.  General expressions for dielectrophoretic force and electrorotational torque derived using the Maxwell stress tensor method , 1997 .

[84]  G. Stephens,et al.  Formation of artificial, structured microbial consortia (ASMC) by dielectrophoresis , 2002 .

[85]  O. Velev,et al.  On-chip electric field driven assembly of biocomposites from live cells and functionalized particles. , 2008, Soft matter.

[86]  O. Velev,et al.  Remotely powered distributed microfluidic pumps and mixers based on miniature diodes. , 2008, Lab on a chip.

[87]  Ronald Pethig,et al.  Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes , 1992 .

[88]  Y. Huang,et al.  Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. , 1992, Physics in medicine and biology.

[89]  H. Takei and,et al.  Gradient Sensitive Microscopic Probes Prepared by Gold Evaporation and Chemisorption on Latex Spheres , 1997 .

[90]  Masao Washizu,et al.  Dielectrophoretic detection of molecular bindings , 2000, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129).

[91]  M. Washizu,et al.  Electrostatic manipulation of DNA in microfabricated structures , 1989, Conference Record of the IEEE Industry Applications Society Annual Meeting,.

[92]  Johannes Schmitt,et al.  Layer-by-layer assembled multicomposite films. , 1998 .

[93]  Ulrich Tallarek,et al.  Nonequilibrium electrokinetic effects in beds of ion-permselective particles. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[94]  F. Legay,et al.  Development of protein microarray technology to monitor biomarkers of rheumatoid arthritis disease , 2003, Cell Biology and Toxicology.

[95]  V. Lundblad,et al.  Yeast , 2008 .

[96]  George M. Whitesides,et al.  Directed Self‐Assembly of Spherical Particles on Patterned Electrodes by an Applied Electric Field , 2005 .

[97]  R. J. Hunter Foundations of Colloid Science , 1987 .

[98]  P. Burke,et al.  Electronic manipulation of DNA, proteins, and nanoparticles for potential circuit assembly. , 2004, Biosensors & bioelectronics.

[99]  P. Gascoyne,et al.  Particle separation by dielectrophoresis , 2002, Electrophoresis.

[100]  S. Dukhin,et al.  Intensification of electrodialysis based on electroosmosis of the second kind , 1993 .

[101]  O. Urakawa,et al.  Small - , 2007 .

[102]  Nicholas K. Sheridon,et al.  Dipole moments of gyricon balls , 2002 .

[103]  Chia-Fu Chou,et al.  Electrodeless dielectrophoresis of single- and double-stranded DNA. , 2002, Biophysical journal.

[104]  Wolfgang Fritzsche,et al.  Pearl chain formation of nanoparticles in microelectrode gaps by dielectrophoresis. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[105]  J. Santiago,et al.  Rotational electrophoresis of striped metallic microrods. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[106]  Sandra M. Troian,et al.  Patterning liquid flow on the microscopic scale , 1999, Nature.

[107]  Hao Zhou,et al.  Calculation of the dynamic impedance of the double layer on a planar electrode by the theory of electrokinetics. , 2005, Journal of colloid and interface science.

[108]  Bernhard Wagner,et al.  Radio-frequency microtools for particle and live cell manipulation , 1994, Naturwissenschaften.

[109]  D A Saville,et al.  Electrically guided assembly of planar superlattices in binary colloidal suspensions. , 2003, Physical review letters.

[110]  Giovanni De Gasperis,et al.  Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces , 1996 .

[111]  D. Leckband,et al.  Higher order self-assembly of vesicles by site-specific binding. , 1994, Science.

[112]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[113]  Size-dependent planar colloidal crystals guided by alternating electric field , 2007 .

[114]  E. Furst,et al.  Anomalous particle rotation and resulting microstructure of colloids in AC electric fields. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[115]  S G Shirley,et al.  Dielectrophoretic sorting of particles and cells in a microsystem. , 1998, Analytical chemistry.

[116]  Tao,et al.  Three-dimensional structure of induced electrorheological solid. , 1991, Physical review letters.

[117]  N. Decoster,et al.  AC field induced two-dimensional aggregation of multilamellar vesicles , 1998 .

[118]  L. White,et al.  Effects of stern-layer conductance on electrokinetic transport properties of colloidal particles , 1990 .

[119]  F F Becker,et al.  Dielectrophoretic manipulation of cells with spiral electrodes. , 1997, Biophysical journal.

[120]  D. Marr,et al.  Two-Dimensional Electrohydrodynamically Induced Colloidal Phases , 2002 .

[121]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[122]  D. Akin,et al.  Characterization and modeling of a microfluidic dielectrophoresis filter for biological species , 2005, Journal of Microelectromechanical Systems.

[123]  W. Fritzsche,et al.  Electrical Classification of the Concentration of Bioconjugated Metal Colloids after Surface Adsorption and Silver Enhancement , 2001 .

[124]  G. van den Engh,et al.  Trapping of DNA by dielectrophoresis , 2002, Electrophoresis.

[125]  C. Zukoski,et al.  Electrorheological fluids as colloidal suspensions , 1989 .

[126]  Seung-Man Yang,et al.  Optofluidic Synthesis of Electroresponsive Photonic Janus Balls with Isotropic Structural Colors , 2008 .

[127]  Vinayak Rastogi,et al.  Development and evaluation of realistic microbioassays in freely suspended droplets on a chip. , 2007, Biomicrofluidics.

[128]  F. Becker,et al.  A unified theory of dielectrophoresis and travelling wave dielectrophoresis , 1994 .

[129]  Serge Ravaine,et al.  Design and synthesis of Janus micro- and nanoparticles , 2005 .

[130]  Murat Okandan,et al.  Combined field-induced dielectrophoresis and phase separation for manipulating particles in microfluidics , 2003 .

[131]  O. Velev,et al.  Dielectrophoretic Assembly of Electrically Functional Microwires from Nanoparticle Suspensions , 2001, Science.

[132]  L. White,et al.  Calculation of the electric polarizability of a charged spherical dielectric particle by the theory of colloidal electrokinetics. , 2005, Journal of colloid and interface science.

[133]  O. Velev,et al.  Fabrication of asymmetrically coated colloid particles by microcontact printing techniques , 2003 .

[134]  Janko Auerswald,et al.  Quantitative assessment of dielectrophoresis as a micro fluidic retention and separation technique for beads and human blood erythrocytes , 2003 .

[135]  Hongjie Dai,et al.  Functionalized Carbon Nanotubes for Molecular Hydrogen Sensors , 2001 .

[136]  B. Cornell,et al.  A biosensor that uses ion-channel switches , 1997, Nature.

[137]  Joerg Lahann,et al.  Biphasic Janus particles with nanoscale anisotropy , 2005, Nature materials.

[138]  K. Kaler,et al.  A novel dielectrophoresis-based device for the selective retention of viable cells in cell culture media. , 1997, Biotechnology and bioengineering.

[139]  Michael Seul,et al.  Assembly of ordered colloidal aggregrates by electric-field-induced fluid flow , 1997, Nature.

[140]  M. Mrksich,et al.  Using electroactive substrates to pattern the attachment of two different cell populations , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[141]  Daniel I. C. Wang,et al.  Engineering cell shape and function. , 1994, Science.

[142]  H. Helmholtz,et al.  Studien über electrische Grenzschichten , 1879 .

[143]  I. T. Young,et al.  Size-dependent trajectories of DNA macromolecules due to insulative dielectrophoresis in submicrometer-deep fluidic channels. , 2008, Biomicrofluidics.

[144]  H. Morgan,et al.  Ac electrokinetics: a review of forces in microelectrode structures , 1998 .

[145]  Seiji Akita,et al.  RAPID COMMUNICATION: Orientation and purification of carbon nanotubes using ac electrophoresis , 1998 .

[146]  A. Ajdari,et al.  Electrically induced interactions between colloidal particles in the vicinity of a conducting plane. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[147]  Janine Nunes,et al.  Electrically driven alignment and crystallization of unique anisotropic polymer particles. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[148]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[149]  I. B. Ivanov,et al.  Two-dimensional crystallization , 1993, Nature.

[150]  G. Whitesides,et al.  Patterning proteins and cells using soft lithography. , 1999, Biomaterials.

[151]  R. Krupke,et al.  Surface Conductance Induced Dielectrophoresis of Semiconducting Single-Walled Carbon Nanotubes , 2004 .

[152]  S. Dukhin,et al.  Electrokinetic phenomena of the second kind and their applications , 1991 .

[153]  O. Velev,et al.  Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[154]  D. Saville,et al.  Assembly of colloidal aggregates by electrohydrodynamic flow: Kinetic experiments and scaling analysis. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[155]  Burçak Alp,et al.  Construction of biofilms with defined internal architecture using dielectrophoresis and flocculation. , 2003, Biotechnology and bioengineering.

[156]  Vanessa Brisson,et al.  Self-assembly and two-dimensional patterning of cell arrays by electrophoretic deposition. , 2002, Biotechnology and bioengineering.

[157]  A. Ajdari,et al.  Pumping liquids using asymmetric electrode arrays , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[158]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[159]  Nicolas Kalogerakis,et al.  Dielectrophoretic forces can be safely used to retain viable cells in perfusion cultures of animal cells , 1999, Cytotechnology.

[160]  H. A. Pohl,et al.  Separation of Living and Dead Cells by Dielectrophoresis , 1966, Science.

[161]  Xinqi Chen,et al.  Aligning single-wall carbon nanotubes with an alternating-current electric field , 2001 .

[162]  H. Morgan,et al.  Dielectrophoresis of DNA: time- and frequency-dependent collections on microelectrodes , 2006, IEEE Transactions on NanoBioscience.

[163]  G. Wiedemann,et al.  Ueber die Bewegung von Flüssigkeiten im Kreise der geschlossenen galvanischen Säule , 1852 .

[164]  R. Fair,et al.  Electrowetting-based actuation of droplets for integrated microfluidics. , 2002, Lab on a chip.

[165]  Sharon C Glotzer,et al.  Biomolecule-directed assembly of nanoscale building blocks studied via lattice Monte Carlo simulation. , 2004, The Journal of chemical physics.

[166]  Castellanos,et al.  AC Electric-Field-Induced Fluid Flow in Microelectrodes. , 1999, Journal of colloid and interface science.

[167]  Mark A Burns,et al.  Optimization of dielectrophoretic DNA stretching in microfabricated devices. , 2006, Analytical chemistry.

[168]  F. Booth The electroviscous effect for suspensions of solid spherical particles , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[169]  M. Washizu Biological applications of electrostatic surface field effects , 2005 .

[170]  Cheng-Hsien Liu,et al.  Rapid heterogeneous liver-cell on-chip patterning via the enhanced field-induced dielectrophoresis trap. , 2006, Lab on a chip.

[171]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[172]  P. A. Smith,et al.  Electric-field assisted assembly and alignment of metallic nanowires , 2000 .

[173]  David W. M. Marr,et al.  Electrically Switchable Colloidal Ordering in Confined Geometries , 2001 .

[174]  Masao Washizu,et al.  Applications of electrostatic stretch-and-positioning of DNA , 1993, Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting.

[175]  E. Braun,et al.  DNA-templated assembly and electrode attachment of a conducting silver wire , 1998, Nature.

[176]  Electric Field-Reversible Three-Dimensional Colloidal Crystals , 2003 .

[177]  E. Katz,et al.  Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. , 2000, Chemphyschem : a European journal of chemical physics and physical chemistry.

[178]  D. Scott,et al.  Assembly of colloidal particles into microwires using an alternating electric field. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[179]  Daniel J. Klingenberg,et al.  Electrorheology : mechanisms and models , 1996 .

[180]  N. Abbott,et al.  Design of Surfaces for Patterned Alignment of Liquid Crystals on Planar and Curved Substrates , 1997 .

[181]  R. Xie,et al.  Electrically Directed On‐Chip Reversible Patterning of Two‐Dimensional Tunable Colloidal Structures , 2008 .

[182]  C. R. Martin,et al.  Carbon nanotubule membranes for electrochemical energy storage and production , 1998, Nature.

[183]  Hywel Morgan,et al.  AC ELECTROKINETICS: COLLOIDS AND NANOPARTICLES. , 2002 .

[184]  L G Griffith,et al.  Integration of surface modification and 3D fabrication techniques to prepare patterned poly(L-lactide) substrates allowing regionally selective cell adhesion. , 1998, Journal of biomaterials science. Polymer edition.

[185]  Thomas B. Jones,et al.  On the Relationship of Dielectrophoresis and Electrowetting , 2002 .

[186]  Ke-Qin Zhang,et al.  In situ observation of colloidal monolayer nucleation driven by an alternating electric field , 2004, Nature.

[187]  Heiko B. Weber,et al.  Simultaneous Deposition of Metallic Bundles of Single-walled Carbon Nanotubes Using Ac-dielectrophoresis , 2003 .

[188]  Robert Langer,et al.  Direct patterning of mammalian cells onto porous tissue engineering substrates using agarose stamps. , 2005, Biomaterials.

[189]  Qiang Zhao,et al.  Electrochemical sensors based on carbon nanotubes , 2002 .

[190]  R. Pethig Dielectrophoresis: Using Inhomogeneous AC Electrical Fields to Separate and Manipulate Cells , 1996 .

[191]  Hyundoo Hwang,et al.  Rapid and selective concentration of microparticles in an optoelectrofluidic platform. , 2009, Lab on a chip.

[192]  S.W. Lee,et al.  Extraction of semiconducting CNTs by repeated dielectrophoretic filtering , 2005 .

[193]  Lee R. White,et al.  Electrophoretic mobility of a spherical colloidal particle in an oscillating electric field , 1992 .

[194]  C. Kim,et al.  Surface-tension-driven microactuation based on continuous electrowetting , 2000, Journal of Microelectromechanical Systems.

[195]  O. Velev,et al.  Two-dimensional crystallization of microspheres by a coplanar AC electric field. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[196]  F. Booth,et al.  The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[197]  Liang Hong,et al.  Clusters of charged Janus spheres. , 2006, Nano letters.

[198]  Ilhan A. Aksay,et al.  Assembly of Colloidal Crystals at Electrode Interfaces , 1997 .

[199]  Orlin D. Velev,et al.  In situ assembly of colloidal particles into miniaturized biosensors , 1999 .

[200]  George M. Whitesides,et al.  Convenient methods for patterning the adhesion of mammalian cells to surfaces using self-assembled monolayers of alkanethiolates on gold , 1993 .

[201]  A. Khademhosseini,et al.  Microscale technologies for tissue engineering and biology. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[202]  Wei Li,et al.  Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. , 2006, Journal of the American Chemical Society.

[203]  Adrienne R Minerick,et al.  Dielectrophoretic characterization of erythrocytes: Positive ABO blood types , 2008, Electrophoresis.

[204]  G. Quincke Ueber eine neue Art elektrischer Ströme , 1859 .

[205]  George M. Whitesides,et al.  Patterning self-assembled monolayers using microcontact printing: A new technology for biosensors? , 1995 .

[206]  P. Gascoyne,et al.  Droplet-based chemistry on a programmable micro-chip. , 2004, Lab on a chip.

[207]  P. Schultz,et al.  Organization of 'nanocrystal molecules' using DNA , 1996, Nature.

[208]  Arjan P Quist,et al.  Recent advances in microcontact printing , 2005, Analytical and bioanalytical chemistry.

[209]  S. Yariv,et al.  Physical Chemistry of Surfaces , 1979 .

[210]  E. Cummings,et al.  Dielectrophoretic concentration and separation of live and dead bacteria in an array of insulators. , 2004, Analytical chemistry.

[211]  Hongjie Dai,et al.  Carbon nanotubes: opportunities and challenges , 2002 .

[212]  Numerical simulation of dielectrophoretic ratchet structures , 2004 .

[213]  Rahul R. Shah,et al.  Principles for Measurement of Chemical Exposure Based on Recognition-Driven Anchoring Transitions in Liquid Crystals , 2001, Science.

[214]  L. Yeo,et al.  Electrowetting films on parallel line electrodes. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[215]  Hsueh-Chia Chang,et al.  An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. , 2007, Biomicrofluidics.

[216]  Masao Washizu,et al.  Molecular dielectrophoresis of bio-polymers , 1992, Conference Record of the 1992 IEEE Industry Applications Society Annual Meeting.

[217]  Peter R. C. Gascoyne,et al.  A theoretical method of electrical field analysis for dielectrophoretic electrode arrays using Green's theorem , 1996 .

[218]  O. Kurosawa,et al.  Quantitative analysis of DNA orientation in stationary AC electric field using fluorescence anisotropy , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[219]  R. Pethig,et al.  Separation of viable and non-viable yeast using dielectrophoresis. , 1994, Journal of biotechnology.

[220]  H. A. Pohl,et al.  Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields , 1978 .

[221]  Hari Singh Nalwa,et al.  Handbook of surfaces and interfaces of materials , 2001 .

[222]  Hiroyuki Fujita,et al.  Positioning living cells on a high-density electrode array by negative dielectrophoresis , 2003 .

[223]  Richard M Crooks,et al.  A Simple Lithographic Approach for Preparing Patterned, Micron-Scale Corrals for Controlling Cell Growth. , 1999, Angewandte Chemie.

[224]  Kaler,et al.  A class of microstructured particles through colloidal crystallization , 2000, Science.

[225]  Tomas Bergman,et al.  Microfluidic electrocapture for separation of peptides. , 2005, Analytical chemistry.

[226]  S. Glotzer,et al.  Self-Assembly of Patchy Particles. , 2004, Nano letters.

[227]  Wim Rutten,et al.  Understanding dielectrophoretic trapping of neuronal cells: modelling electric field, electrode-liquid interface and fluid flow , 2002 .

[228]  J. Prost,et al.  Two-dimensional aggregation and crystallization of a colloidal suspension of latex spheres , 1984 .

[229]  O. Velev,et al.  Colloidal Particles at Liquid Interfaces: Novel Materials Derived from Particles Assembled on Liquid Surfaces , 2006 .

[230]  O. Velev,et al.  Anisotropic particle synthesis in dielectrophoretically controlled microdroplet reactors , 2004, Nature materials.

[231]  Liming Ying,et al.  Trapping of proteins under physiological conditions in a nanopipette. , 2005, Angewandte Chemie.

[232]  Hsueh-Chia Chang,et al.  Electrokinetic transport of red blood cells in microcapillaries , 2002, Electrophoresis.

[233]  Cheng,et al.  Hydrogen storage in single-walled carbon nanotubes at room temperature , 1999, Science.

[234]  Alex Terray,et al.  Microfluidic Control Using Colloidal Devices , 2002, Science.

[235]  Rosa H. M. Chan,et al.  Rapid assembly of carbon nanotubes for nanosensing by dielectrophoretic force , 2004 .

[236]  I. Hsing,et al.  An improved anodic bonding process using pulsed voltage technique , 2000, Journal of Microelectromechanical Systems.

[237]  D. A. Saville,et al.  Field-Induced Layering of Colloidal Crystals , 1996, Science.

[238]  M. Strano,et al.  Dielectrophoresis of surface conductance modulated single-walled carbon nanotubes using catanionic surfactants. , 2006, The journal of physical chemistry. B.

[239]  George M. Whitesides,et al.  Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters , 2002 .

[240]  Hywel Morgan,et al.  Dielectrophoresis of Submicrometer Latex Spheres. 1. Experimental Results , 1999 .

[241]  O. Cayre,et al.  Supraparticles and “Janus” Particles Fabricated by Replication of Particle Monolayers at Liquid Surfaces Using a Gel Trapping Technique , 2004 .

[242]  M. Bazant,et al.  Induced-charge electro-osmosis , 2003, Journal of Fluid Mechanics.

[243]  Frederick F Becker,et al.  Microsample preparation by dielectrophoresis: isolation of malaria. , 2002, Lab on a chip.

[244]  Cengiz S. Ozkan,et al.  Electric Field Assisted Patterning of Neuronal Networks for the Study of Brain Functions , 2003 .

[245]  Yingxi Zhu,et al.  Double-layer effects on low frequency dielectrophoresis-induced colloidal assembly , 2008 .

[246]  N. Seeman,et al.  Design and self-assembly of two-dimensional DNA crystals , 1998, Nature.

[247]  Hiroyuki Ohshima,et al.  A Simple Expression for Henry's Function for the Retardation Effect in Electrophoresis of Spherical Colloidal Particles , 1994 .

[248]  S. Quake,et al.  From micro- to nanofabrication with soft materials. , 2000, Science.

[249]  J. Voldman,et al.  Dielectrophoretic registration of living cells to a microelectrode array. , 2004, Biosensors & bioelectronics.

[250]  J R A Beale,et al.  Solid State Electronic Devices , 1973 .

[251]  Hsueh-Chia Chang,et al.  Manipulation and characterization of red blood cells with alternating current fields in microdevices , 2003, Electrophoresis.

[252]  C. S. Chen,et al.  Geometric control of cell life and death. , 1997, Science.

[253]  Castellanos,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. II. A linear double-layer analysis , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[254]  Junya Suehiro,et al.  Selective detection of viable bacteria using dielectrophoretic impedance measurement method , 2003 .

[255]  H. Morgan,et al.  Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. III. Observation of streamlines and numerical simulation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.