Continuous Long-Term Evolution of Genetic Programming

We evolve floating point Sextic polynomial populations of genetic programming binary trees for up to a million generations. Programs with almost 400 000 000 instructions are created by crossover. T...

[1]  R. Lenski EXPERIMENTAL STUDIES OF PLEIOTROPY AND EPISTASIS IN ESCHERICHIA COLI. I. VARIATION IN COMPETITIVE FITNESS AMONG MUTANTS RESISTANT TO VIRUS T4 , 1988, Evolution; international journal of organic evolution.

[2]  Gilbert Syswerda,et al.  A Study of Reproduction in Generational and Steady State Genetic Algorithms , 1990, FOGA.

[3]  I. Kornfield,et al.  Major low levels of Lake Malawi and their implications for speciation rates in cichlid fishes , 1990, Proceedings of the Royal Society of London. B. Biological Sciences.

[4]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[5]  Walter Alden Tackett,et al.  Recombination, selection, and the genetic construction of computer programs , 1994 .

[6]  Martin C. Martin,et al.  Genetic programming in C++: implementation issues , 1994 .

[7]  Una-May O'Reilly,et al.  Genetic Programming II: Automatic Discovery of Reusable Programs. , 1994, Artificial Life.

[8]  L. Altenberg The evolution of evolvability in genetic programming , 1994 .

[9]  Peter J. Angeline,et al.  Genetic programming and emergent intelligence , 1994 .

[10]  Philippe Flajolet,et al.  An introduction to the analysis of algorithms , 1995 .

[11]  Peter Nordin,et al.  Evolutionary program induction of binary machine code and its applications , 1997 .

[12]  Riccardo Poli,et al.  Fitness Causes Bloat , 1998 .

[13]  William B. Langdon,et al.  Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! , 1998 .

[14]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[15]  Riccardo Poli,et al.  Sub-machine-code genetic programming , 1999 .

[16]  Christopher R. Stephens,et al.  Schemata Evolution and Building Blocks , 1999, Evolutionary Computation.

[17]  William B. Langdon Linear Increase in Tree Height Leads to Sub-Quadratic Bloat , 1999 .

[18]  William B. Langdon,et al.  Size fair and homologous tree genetic programming crossovers , 1999 .

[19]  Riccardo Poli,et al.  The evolution of size and shape , 1999 .

[20]  William B. Langdon,et al.  Quadratic Bloat in Genetic Programming , 2000, GECCO.

[21]  Riccardo Poli,et al.  A Schema Theory Analysis of the Evolution of Size in Genetic Programming with Linear Representations , 2001, EuroGP.

[22]  Riccardo Poli,et al.  Foundations of Genetic Programming , 1999, Springer Berlin Heidelberg.

[23]  Riccardo Poli,et al.  Solving High-Order Boolean Parity Problems with Smooth Uniform Crossover, Sub-Machine Code GP and Demes , 2000, Genetic Programming and Evolvable Machines.

[24]  Riccardo Poli,et al.  A Field Guide to Genetic Programming , 2008 .

[25]  William B. Langdon Large Scale Bioinformatics Data Mining with Parallel Genetic Programming on Graphics Processing Units , 2010, Parallel and Distributed Computational Intelligence.

[26]  J. L. Gittleman,et al.  The maximum rate of mammal evolution , 2012, Proceedings of the National Academy of Sciences.

[27]  Riccardo Poli,et al.  Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP , 2014, Theory and Principled Methods for the Design of Metaheuristics.

[28]  Michael J. Wiser,et al.  Sustained fitness gains and variability in fitness trajectories in the long-term evolution experiment with Escherichia coli , 2015, bioRxiv.

[29]  William B. Langdon,et al.  Long-term evolution of genetic programming populations , 2017, GECCO.

[30]  William B. Langdon,et al.  Faster Genetic Programming GPquick via multicore and Advanced Vector Extensions , 2019, ArXiv.