Smooth and Compactly Supported Viscous Sub-cell Shock Capturing for Discontinuous Galerkin Methods

In this work, a novel artificial viscosity method is proposed using smooth and compactly supported viscosities. These are derived by revisiting the widely used piecewise constant artificial viscosity method of Persson and Peraire as well as the piecewise linear refinement of Klöckner et al. with respect to the fundamental design criteria of conservation and entropy stability. Further investigating the method of modal filtering in the process, it is demonstrated that this strategy has inherent shortcomings, which are related to problems of Legendre viscosities to handle shocks near element boundaries. This problem is overcome by introducing certain functions from the fields of robust reprojection and mollifiers as viscosity distributions. To the best of our knowledge, this is proposed for the first time in this work. The resulting $$C_0^\infty $$C0∞artificial viscosity method is demonstrated to provide sharper profiles, steeper gradients, and a higher resolution of small-scale features while still maintaining stability of the method.

[1]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[2]  Anne Gelb,et al.  Detection of Edges in Spectral Data II. Nonlinear Enhancement , 2000, SIAM J. Numer. Anal..

[3]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[4]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[5]  Jan S. Hesthaven,et al.  Idempotent filtering in spectral and spectral element methods , 2006, J. Comput. Phys..

[6]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[7]  Philipp Öffner,et al.  A novel discontinuous Galerkin method using the principle of discrete least squares , 2017 .

[8]  A. Bressan Hyperbolic Systems of Conservation Laws , 1999 .

[9]  Jared Tanner,et al.  Optimal filter and mollifier for piecewise smooth spectral data , 2006, Math. Comput..

[10]  Anne Gelb,et al.  Detection of Edges in Spectral Data , 1999 .

[11]  Pierre Sagaut,et al.  A problem-independent limiter for high-order Runge—Kutta discontinuous Galerkin methods , 2001 .

[12]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[13]  Hendrik Ranocha,et al.  Stability of correction procedure via reconstruction with summation-by-parts operators for Burgers' equation using a polynomial chaos approach , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[14]  I. Babuska,et al.  A DiscontinuoushpFinite Element Method for Diffusion Problems , 1998 .

[15]  J. Peraire,et al.  Sub-Cell Shock Capturing for Discontinuous Galerkin Methods , 2006 .

[16]  T. Sonar,et al.  An extended Discontinuous Galerkin and Spectral Difference Method with modal filtering , 2013 .

[17]  Jan S. Hesthaven,et al.  Nodal high-order discontinuous Galerkin methods for the spherical shallow water equations , 2002 .

[18]  Philipp Öffner,et al.  Stability of artificial dissipation and modal filtering for flux reconstruction schemes using summation-by-parts operators , 2018, Applied Numerical Mathematics.

[19]  David L. Darmofal,et al.  Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation , 2010, J. Comput. Phys..

[20]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[21]  Anne Gelb,et al.  Robust reprojection methods for the resolution of the Gibbs phenomenon , 2006 .

[22]  E. Hewitt,et al.  The Gibbs-Wilbraham phenomenon: An episode in fourier analysis , 1979 .

[23]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[24]  Jean-Luc Guermond,et al.  Entropy-based nonlinear viscosity for Fourier approximations of conservation laws , 2008 .

[25]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[26]  T. Sonar,et al.  Detecting Strength and Location of Jump Discontinuities in Numerical Data , 2013 .

[27]  Rick Archibald,et al.  Polynomial Fitting for Edge Detection in Irregularly Sampled Signals and Images , 2005, SIAM J. Numer. Anal..

[28]  Jérôme Jaffré,et al.  CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS , 1995 .

[29]  Joseph Oliger,et al.  Stability of the Fourier method , 1977 .

[30]  Andrew J. Majda,et al.  The Fourier method for nonsmooth initial data , 1978 .

[31]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[32]  Miloslav Feistauer,et al.  On a robust discontinuous Galerkin technique for the solution of compressible flow , 2007, J. Comput. Phys..

[33]  Eitan Tadmor,et al.  Adaptive Mollifiers for High Resolution Recovery of Piecewise Smooth Data from its Spectral Information , 2001, Found. Comput. Math..

[34]  Chi-Wang Shu,et al.  The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .

[35]  Rick Archibald,et al.  Determining the locations and discontinuities in the derivatives of functions , 2008 .

[36]  Stefan Turek,et al.  Flux-corrected transport : principles, algorithms, and applications , 2005 .

[37]  F. Hu On Absorbing Boundary Conditions for Linearized Euler Equations by a Perfectly Matched Layer , 1995 .

[38]  Bernardo Cockburn,et al.  Discontinuous Galerkin Methods for Convection-Dominated Problems , 1999 .

[39]  Chi-Wang Shu,et al.  The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.

[40]  Ralf Hartmann,et al.  Adaptive discontinuous Galerkin methods with shock‐capturing for the compressible Navier–Stokes equations , 2006 .

[41]  Erik Dick,et al.  On the spectral and conservation properties of nonlinear discretization operators , 2011, J. Comput. Phys..

[42]  S. Bochner,et al.  Über Sturm-Liouvillesche Polynomsysteme , 1929 .

[43]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[44]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[45]  Sergio Pirozzoli,et al.  On the spectral properties of shock-capturing schemes , 2006, J. Comput. Phys..

[46]  E. J. Routh On some Properties of certain Solutions of a Differential Equation of the Second Order , 1884 .

[47]  Antony Jameson,et al.  A New Class of High-Order Energy Stable Flux Reconstruction Schemes , 2011, J. Sci. Comput..

[48]  D. Gottlieb,et al.  Spectral methods for hyperbolic problems , 2001 .

[49]  J. Oden,et al.  A discontinuous hp finite element method for convection—diffusion problems , 1999 .

[50]  Jan S. Hesthaven,et al.  Spectral Simulations of Electromagnetic Wave Scattering , 1997 .

[51]  H. T. Huynh,et al.  A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods , 2007 .

[52]  Philipp Öffner,et al.  Application of modal filtering to a spectral difference method , 2016, Math. Comput..

[53]  Anne Gelb,et al.  Adaptive Edge Detectors for Piecewise Smooth Data Based on the minmod Limiter , 2006, J. Sci. Comput..

[54]  Robert Michael Kirby,et al.  Filtering in Legendre spectral methods , 2008, Math. Comput..

[55]  Andreas Meister,et al.  Application of spectral filtering to discontinuous Galerkin methods on triangulations , 2012 .

[56]  J. S. Hesthaven,et al.  Viscous Shock Capturing in a Time-Explicit Discontinuous Galerkin Method , 2011, 1102.3190.

[57]  Francesco Bassi,et al.  Accurate 2D Euler computations by means of a high order discontinuous finite element method , 1995 .

[58]  Eitan Tadmor,et al.  From Semidiscrete to Fully Discrete: Stability of Runge-Kutta Schemes by The Energy Method , 1998, SIAM Rev..

[59]  David I. Ketcheson,et al.  Highly Efficient Strong Stability-Preserving Runge-Kutta Methods with Low-Storage Implementations , 2008, SIAM J. Sci. Comput..

[60]  Bernardo Cockburn,et al.  The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .

[61]  Anne Gelb,et al.  Detection of Edges in Spectral Data III—Refinement of the Concentration Method , 2008, J. Sci. Comput..

[62]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[63]  Antony Jameson,et al.  Shock detection and capturing methods for high order Discontinuous-Galerkin Finite Element Methods , 2014 .

[64]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[65]  D. Leservoisier,et al.  About theoretical and practical impact of mesh adaptation on approximation of functions and PDE solutions , 2003 .

[66]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[67]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems , 1989 .

[68]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[69]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[70]  David I. Ketcheson,et al.  Strong stability preserving runge-kutta and multistep time discretizations , 2011 .

[71]  Gregor Gassner,et al.  A Skew-Symmetric Discontinuous Galerkin Spectral Element Discretization and Its Relation to SBP-SAT Finite Difference Methods , 2013, SIAM J. Sci. Comput..