Quadratic conservative scheme for relativistic Vlasov-Maxwell system

Abstract For more than half a century, most of the plasma scientists have encountered a violation of the conservation laws of charge, momentum, and energy whenever they have numerically solved the first-principle equations of kinetic plasmas, such as the relativistic Vlasov–Maxwell system. This fatal problem is brought by the fact that both the Vlasov and Maxwell equations are indirectly associated with the conservation laws by means of some mathematical manipulations. Here we propose a quadratic conservative scheme, which can strictly maintain the conservation laws by discretizing the relativistic Vlasov–Maxwell system. A discrete product rule and summation-by-parts are the key players in the construction of the quadratic conservative scheme. Numerical experiments of the relativistic two-stream instability and relativistic Weibel instability prove the validity of our computational theory, and the proposed strategy will open the doors to the first-principle studies of mesoscopic and macroscopic plasma physics.

[1]  Giorgio Kaniadakis,et al.  Relaxation of Relativistic Plasmas Under the Effect of Wave-Particle Interactions , 2007 .

[2]  Soshi Kawai,et al.  Structure-preserving operators for thermal-nonequilibrium hydrodynamics , 2017, J. Comput. Phys..

[3]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[4]  Karney,et al.  Differential form of the collision integral for a relativistic plasma. , 1987, Physical review letters.

[5]  William M. MacDonald,et al.  Fokker-Planck Equation for an Inverse-Square Force , 1957 .

[6]  Rémi Abgrall,et al.  Efficient numerical approximation of compressible multi-material flow for unstructured meshes , 2003 .

[7]  Luis Chacón,et al.  An energy- and charge-conserving, nonlinearly implicit, electromagnetic 1D-3V Vlasov-Darwin particle-in-cell algorithm , 2013, Comput. Phys. Commun..

[8]  Giovanni Lapenta,et al.  Exactly energy conserving semi-implicit particle in cell formulation , 2016, J. Comput. Phys..

[9]  Shinji Tokuda,et al.  Conservative global gyrokinetic toroidal full-f five-dimensional Vlasov simulation , 2008, Comput. Phys. Commun..

[10]  François Guibault,et al.  Nanoscale adaptive meshing for rapid STM imaging , 2008, J. Comput. Phys..

[11]  M. F. O'REILLY,et al.  On Mass , 1897, Nature.

[12]  T. Sato,et al.  Nondissipative kinetic simulation and analytical solution of three-mode equations of the ion temperature gradient instability , 1999 .

[13]  Yosuke Matsumoto,et al.  Multi-moment advection scheme for Vlasov simulations , 2011, J. Comput. Phys..

[14]  Daisuke Saito,et al.  A numerical method for solving the Vlasov-Poisson equation based on the conservative IDO scheme , 2009, J. Comput. Phys..

[15]  Gian Luca Delzanno,et al.  On the velocity space discretization for the Vlasov-Poisson system: Comparison between implicit Hermite spectral and Particle-in-Cell methods , 2016, Comput. Phys. Commun..

[16]  Luis Chacón,et al.  A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm , 2015, Comput. Phys. Commun..

[17]  Francis F. Chen,et al.  Introduction to Plasma Physics and Controlled Fusion , 2015 .

[18]  P. Morrison,et al.  Structure and structure-preserving algorithms for plasma physics , 2016, 1612.06734.

[19]  Gian Luca Delzanno,et al.  A Legendre-Fourier spectral method with exact conservation laws for the Vlasov-Poisson system , 2016, J. Comput. Phys..

[20]  Chang-Mo Ryu,et al.  Nonlinear saturation of relativistic Weibel instability driven by thermal anisotropy , 2009 .

[21]  Kenji Takizawa,et al.  Conservative form of interpolated differential operator scheme for compressible and incompressible fluid dynamics , 2008, J. Comput. Phys..

[22]  P. Moin,et al.  Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow , 1998 .

[23]  Remi Abgrall,et al.  A high-order nonconservative approach for hyperbolic equations in fluid dynamics , 2017, Computers & Fluids.

[24]  Stefano Markidis,et al.  The energy conserving particle-in-cell method , 2011, J. Comput. Phys..

[25]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[26]  Parviz Moin,et al.  Higher entropy conservation and numerical stability of compressible turbulence simulations , 2004 .

[27]  E. S. Weibel,et al.  Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution , 1959 .

[28]  Antony Jameson,et al.  Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes , 2008, J. Sci. Comput..

[29]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[30]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[31]  G. Mur Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations , 1981, IEEE Transactions on Electromagnetic Compatibility.

[32]  Luis Chacón,et al.  A mass, momentum, and energy conserving, fully implicit, scalable algorithm for the multi-dimensional, multi-species Rosenbluth-Fokker-Planck equation , 2015, J. Comput. Phys..

[33]  Yohei Morinishi,et al.  Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-Mach number flows , 2010, J. Comput. Phys..

[34]  Keisuke Sawada,et al.  Calculation of Nonequilibrium Radiation from a Blunt-Body Shock Layer , 2001 .

[35]  Yasuhiro Idomura,et al.  A new hybrid kinetic electron model for full-f gyrokinetic simulations , 2016, J. Comput. Phys..

[36]  Soshi Kawai,et al.  Kinetic energy and entropy preserving schemes for compressible flows by split convective forms , 2018, J. Comput. Phys..

[37]  Sergio Pirozzoli,et al.  Generalized conservative approximations of split convective derivative operators , 2010, J. Comput. Phys..

[38]  Gian Luca Delzanno,et al.  Multi-dimensional, fully-implicit, spectral method for the Vlasov-Maxwell equations with exact conservation laws in discrete form , 2015, J. Comput. Phys..

[39]  Yingda Cheng,et al.  Energy-conserving discontinuous Galerkin methods for the Vlasov-Ampère system , 2013, J. Comput. Phys..

[40]  Pramod K. Subbareddy,et al.  A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows , 2009, J. Comput. Phys..

[41]  Burton D. Fried,et al.  Mechanism for Instability of Transverse Plasma Waves , 1959 .

[42]  Laurent Villard,et al.  New conservative gyrokinetic full-f Vlasov code and its comparison to gyrokinetic δf particle-in-cell code , 2007, J. Comput. Phys..

[43]  Takayuki Umeda,et al.  Full electromagnetic Vlasov code simulation of the Kelvin.Helmholtz instability , 2010 .

[44]  Yingda Cheng,et al.  Energy-conserving discontinuous Galerkin methods for the Vlasov-Maxwell system , 2014, J. Comput. Phys..

[45]  Jean C. Ragusa,et al.  Discontinuous finite element solution of the radiation diffusion equation on arbitrary polygonal meshes and locally adapted quadrilateral grids , 2015, J. Comput. Phys..

[46]  A. Arakawa Computational design for long-term numerical integration of the equations of fluid motion: two-dimen , 1997 .