On Handling Free Variables in Interior-Point Methods for Conic Linear Optimization
暂无分享,去创建一个
[1] Jiming Peng,et al. On Mehrotra-Type Predictor-Corrector Algorithms , 2007, SIAM J. Optim..
[2] Masakazu Muramatsu,et al. Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .
[3] C. Mészáros. On free variables in interior point methods , 1998 .
[4] H. Upmeier. ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .
[5] Miguel F. Anjos,et al. An improved semidefinite programming relaxation for the satisfiability problem , 2005, Math. Program..
[6] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[7] Yin Zhang,et al. On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..
[8] J. Faraut,et al. Analysis on Symmetric Cones , 1995 .
[9] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[10] M. Bingham. Analysis on Symmetric Cones (oxford Mathematical Monographs) , 2006 .
[11] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[12] Kim-Chuan Toh,et al. SDPT3 — a Matlab software package for semidefinite-quadratic-linear programming, version 3.0 , 2001 .
[13] Shinji Mizuno,et al. A primal—dual infeasible-interior-point algorithm for linear programming , 1993, Math. Program..
[14] Sanjay Mehrotra,et al. On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..
[15] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[16] Henry Wolkowicz,et al. Handbook of Semidefinite Programming , 2000 .
[17] Janos Korzak,et al. Convergence Analysis of Inexact Infeasible-Interior-Point Algorithms for Solving Linear Programming Problems , 2000, SIAM J. Optim..
[18] Brian Borchers,et al. SDPLIB 1.1, A Library of Semidefinite Programming Test Problems , 1998 .
[19] Robert J. Vanderbei,et al. Symmetric Quasidefinite Matrices , 1995, SIAM J. Optim..
[20] Yuval Rabani,et al. Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.
[21] Kim-Chuan Toh,et al. Polynomiality of an inexact infeasible interior point algorithm for semidefinite programming , 2004, Math. Program..
[22] Stefan Schmieta,et al. The DIMACS library of semidefinite-quadratic-linear programs , 1999 .
[23] Masakazu Kojima,et al. A conversion of an SDP having free variables into the standard form SDP , 2007, Comput. Optim. Appl..
[24] Yin Zhang,et al. On polynomiality of the Mehrotra-type predictor—corrector interior-point algorithms , 1995, Math. Program..
[25] Yin Zhang,et al. On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..
[26] Shinji Mizuno,et al. Global and polynomial-time convergence of an infeasible-interior-point algorithm using inexact computation , 1997, Math. Program..
[27] T. Motzkin,et al. Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.
[28] Johan Efberg,et al. YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .
[29] Etienne de Klerk,et al. Aspects of Semidefinite Programming , 2002 .
[30] Paolo Toth,et al. Exact Solution of the Quadratic Knapsack Problem , 1999, INFORMS J. Comput..
[31] M. Overton,et al. The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions. , 2004, The Journal of chemical physics.
[32] Jean B. Lasserre,et al. An Explicit Equivalent Positive Semidefinite Program for Nonlinear 0-1 Programs , 2002, SIAM J. Optim..
[33] Hans D. Mittelmann,et al. An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..
[34] Yin Zhang,et al. User'S guide To Lipsol linear-programming interior point solvers V0.4 , 1999 .
[35] Jean B. Lasserre,et al. Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..
[36] Shinji Mizuno,et al. Convergence of a Class of Inexact Interior-Point Algorithms for Linear Programs , 1999, Math. Oper. Res..
[37] István Maros,et al. The role of the augmented system in interior point methods , 1998, Eur. J. Oper. Res..