On Handling Free Variables in Interior-Point Methods for Conic Linear Optimization

We revisit a regularization technique of Meszaros for handling free variables within interior-point methods for conic linear optimization. We propose a simple computational strategy, supported by a global convergence analysis, for handling the regularization. Using test problems from benchmark suites and recent applications, we demonstrate that the modern code SDPT3 modified to incorporate the proposed regularization is able to achieve the same or significantly better accuracy over standard options of splitting variables, using a quadratic cone, and solving indefinite systems.

[1]  Jiming Peng,et al.  On Mehrotra-Type Predictor-Corrector Algorithms , 2007, SIAM J. Optim..

[2]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[3]  C. Mészáros On free variables in interior point methods , 1998 .

[4]  H. Upmeier ANALYSIS ON SYMMETRIC CONES (Oxford Mathematical Monographs) , 1996 .

[5]  Miguel F. Anjos,et al.  An improved semidefinite programming relaxation for the satisfiability problem , 2005, Math. Program..

[6]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[7]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[8]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[9]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[10]  M. Bingham Analysis on Symmetric Cones (oxford Mathematical Monographs) , 2006 .

[11]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[12]  Kim-Chuan Toh,et al.  SDPT3 — a Matlab software package for semidefinite-quadratic-linear programming, version 3.0 , 2001 .

[13]  Shinji Mizuno,et al.  A primal—dual infeasible-interior-point algorithm for linear programming , 1993, Math. Program..

[14]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[15]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[16]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[17]  Janos Korzak,et al.  Convergence Analysis of Inexact Infeasible-Interior-Point Algorithms for Solving Linear Programming Problems , 2000, SIAM J. Optim..

[18]  Brian Borchers,et al.  SDPLIB 1.1, A Library of Semidefinite Programming Test Problems , 1998 .

[19]  Robert J. Vanderbei,et al.  Symmetric Quasidefinite Matrices , 1995, SIAM J. Optim..

[20]  Yuval Rabani,et al.  Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.

[21]  Kim-Chuan Toh,et al.  Polynomiality of an inexact infeasible interior point algorithm for semidefinite programming , 2004, Math. Program..

[22]  Stefan Schmieta,et al.  The DIMACS library of semidefinite-quadratic-linear programs , 1999 .

[23]  Masakazu Kojima,et al.  A conversion of an SDP having free variables into the standard form SDP , 2007, Comput. Optim. Appl..

[24]  Yin Zhang,et al.  On polynomiality of the Mehrotra-type predictor—corrector interior-point algorithms , 1995, Math. Program..

[25]  Yin Zhang,et al.  On the Convergence of a Class of Infeasible Interior-Point Methods for the Horizontal Linear Complementarity Problem , 1994, SIAM J. Optim..

[26]  Shinji Mizuno,et al.  Global and polynomial-time convergence of an infeasible-interior-point algorithm using inexact computation , 1997, Math. Program..

[27]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[28]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[29]  Etienne de Klerk,et al.  Aspects of Semidefinite Programming , 2002 .

[30]  Paolo Toth,et al.  Exact Solution of the Quadratic Knapsack Problem , 1999, INFORMS J. Comput..

[31]  M. Overton,et al.  The reduced density matrix method for electronic structure calculations and the role of three-index representability conditions. , 2004, The Journal of chemical physics.

[32]  Jean B. Lasserre,et al.  An Explicit Equivalent Positive Semidefinite Program for Nonlinear 0-1 Programs , 2002, SIAM J. Optim..

[33]  Hans D. Mittelmann,et al.  An independent benchmarking of SDP and SOCP solvers , 2003, Math. Program..

[34]  Yin Zhang,et al.  User'S guide To Lipsol linear-programming interior point solvers V0.4 , 1999 .

[35]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[36]  Shinji Mizuno,et al.  Convergence of a Class of Inexact Interior-Point Algorithms for Linear Programs , 1999, Math. Oper. Res..

[37]  István Maros,et al.  The role of the augmented system in interior point methods , 1998, Eur. J. Oper. Res..