LiNbO3 surfaces from a microscopic perspective

A large number of oxides has been investigated in the last twenty years as possible new materials for various applications ranging from opto-electronics to heterogeneous catalysis. In this context, ferroelectric oxides are particularly promising. The electric polarization plays a crucial role at many oxide surfaces, and it largely determines their physical and chemical properties. Ferroelectrics offer in addition the possibility to control/switch the electric polarization and hence the surface chemistry, allowing for the realization of domain-engineered nanoscale devices such as molecular detectors or highly efficient catalysts. Lithium niobate (LiNbO3) is a ferroelectric with a high spontaneous polarization, whose surfaces have a huge and largely unexplored potential. Owing to recent advances in experimental techniques and sample preparation, peculiar and exclusive properties of LiNbO3 surfaces could be demonstrated. For example, water films freeze at different temperatures on differently polarized surfaces, and the chemical etching properties of surfaces with opposite polarization are strongly different. More important, the ferroelectric domain orientation affects temperature dependent surface stabilization mechanisms and molecular adsorption phenomena. Various ab initio theoretical investigations have been performed in order to understand the outcome of these experiments and the origin of the exotic behavior of the lithium niobate surfaces. Thanks to these studies, many aspects of their surface physics and chemistry could be clarified. Yet other puzzling features are still not understood. This review gives a résumé on the present knowledge of lithium niobate surfaces, with a particular view on their microscopic properties, explored in recent years by means of ab initio calculations. Relevant aspects and properties of the surfaces that need further investigation are briefly discussed. The review is concluded with an outlook of challenges and potential payoff for LiNbO3 based applications.

[1]  Chadi,et al.  First-principles calculations of atomic and electronic structure of the GaAs(110) surface. , 1988, Physical review. B, Condensed matter.

[2]  C. Park,et al.  First-principles study of microscopic properties of the Nb antisite in LiNbO 3 : Comparison to phenomenological polaron theory , 2008 .

[3]  U. Waghmare,et al.  Dynamic local distortions in KNbO3 , 1999 .

[4]  D. Bonnell,et al.  The effect of ferroelectric polarization on the interaction of water and methanol with the surface of LiNbO3(0001) , 2009 .

[5]  Alexander G. Carver,et al.  Challenges and potential payoff for crystalline oxides in wide bandgap semiconductor technology , 2003 .

[6]  W. Schmidt,et al.  Polarization-dependent water adsorption on the LiNbO 3 (0001) surface , 2012 .

[7]  S. Hüfner,et al.  Photoelectron-spectroscopy investigation and electronic properties of LiNbO3 crystal surfaces , 1980 .

[8]  A. Naumovets,et al.  The impact of annealing and evaporation of crystals on their surface composition , 1999 .

[9]  W. Schmidt,et al.  Atomic-resolution imaging of the polar (000{1¯}) surface of LiNbO{3} in aqueous solution by frequency modulation atomic force microscopy , 2012 .

[10]  A. Proutière,et al.  Dipole Moments of 4-n Alkyl-4′-Cyanobiphenyl Molecules (from OCB to 12CB) Measurement in Four Solvents and Theoretical Calculations , 1986 .

[11]  M. Robert,et al.  Surface acoustic wave applications of lithium niobate thin films , 2003 .

[12]  T. Becker,et al.  Stability of the polar surfaces of ZnO: A reinvestigation using He-atom scattering , 2002 .

[13]  W. Brocklesby,et al.  Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations , 2002 .

[14]  K. Terabe,et al.  Surface potential imaging of nanoscale LiNbO3 domains investigated by electrostatic force microscopy , 2006 .

[15]  Francesco Merola,et al.  Manipulation of Nematic Liquid Crystal Microdroplets by Pyroelectric Effect , 2013 .

[16]  P. Gao,et al.  Revealing the role of defects in ferroelectric switching with atomic resolution. , 2011, Nature communications.

[17]  Huiying Hu,et al.  Optical and structural properties of single-crystal lithium niobate thin film , 2015 .

[19]  V. Shur Kinetics of ferroelectric domains: Application of general approach to LiNbO3 and LiTaO3 , 2006 .

[20]  A. Calò,et al.  Water Affinity and Surface Charging at the z-Cut and y-Cut LiNbO3 Surfaces: An Ambient Pressure X-ray Photoelectron Spectroscopy Study , 2016 .

[21]  V. Cháb,et al.  Photoelectron spectroscopy investigation of defects on LiNbO3 surfaces , 1986 .

[22]  Manos Mavrikakis,et al.  Electronic structure and catalysis on metal surfaces. , 2002, Annual review of physical chemistry.

[23]  D. A. Kleinman,et al.  Dependence of Second-Harmonic Generation on the Position of the Focus , 1966 .

[24]  E. Altman,et al.  Effect of ferroelectric poling on the adsorption of 2-propanol on LiNbO3(0001) , 2007 .

[25]  D. Vanderbilt First-principles based modelling of ferroelectrics , 1997 .

[26]  W. Schmidt,et al.  Temperature dependent LiNbO3(0 0 0 1): Surface reconstruction and surface charge , 2014 .

[27]  S. Torbruegge,et al.  Atomic scale evidence for faceting stabilization of a polar oxide surface , 2008 .

[28]  In‐plane lattice parameter determination of Zn:LiNbO3 thin films epitaxially grown on x‐cut LiNbO3 substrates using X‐ray diffraction methods , 2007 .

[29]  B S Clausen,et al.  Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. , 2001, Journal of the American Chemical Society.

[30]  A. Kühnle,et al.  True atomic-resolution imaging of (1014) calcite in aqueous solution by frequency modulation atomic force microscopy. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[31]  J. Lunsford CATALYTIC CONVERSION OF METHANE TO MORE USEFUL CHEMICALS AND FUELS: A CHALLENGE FOR THE 21ST CENTURY , 2000 .

[32]  Kenji Saito,et al.  Lithium niobate nanowires for photocatalytic water splitting. , 2011 .

[33]  B Aradi,et al.  Self-interaction and strong correlation in DFTB. , 2007, The journal of physical chemistry. A.

[34]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[35]  T. Frauenheim,et al.  A theoretical study of erbium in GaN , 2006 .

[36]  R. Stark,et al.  Modification of a commercial atomic force microscopy for low-noise, high-resolution frequency-modulation imaging in liquid environment. , 2011, The Review of scientific instruments.

[37]  Philippe Ghosez,et al.  First-principles study of the electro-optic effect in ferroelectric oxides. , 2004, Physical review letters.

[38]  A. Vojvodić,et al.  New design paradigm for heterogeneous catalysts , 2015 .

[39]  W. Schmidt,et al.  Optical response of stoichiometric and congruent lithium niobate from first-principles calculations , 2013 .

[40]  A. Gruverman,et al.  Physical adsorption on ferroelectric surfaces: photoinduced and thermal effects , 2008, Nanotechnology.

[41]  J. Koutecký Quantum Chemistry of Crystal Surfaces , 2007 .

[42]  S. Ismail-Beigi,et al.  Ferroelectric surface chemistry: First-principles study of the PbTiO 3 surface , 2013 .

[43]  A. Vojvodić,et al.  From electronic structure to catalytic activity: a single descriptor for adsorption and reactivity on transition-metal carbides. , 2009, Physical review letters.

[44]  S. Ismail-Beigi,et al.  Polarization-driven catalysis via ferroelectric oxide surfaces. , 2016, Physical chemistry chemical physics : PCCP.

[45]  D. Vanderbilt,et al.  Electric polarization as a bulk quantity and its relation to surface charge. , 1993, Physical review. B, Condensed matter.

[46]  Wolf Gero Schmidt,et al.  Unraveling theLiNbO3X-cut surface by atomic force microscopy and density functional theory , 2014 .

[47]  S. Ciraci,et al.  Commentary on the Effect of Relaxation on the Electronic-Energy-Level Structure of the Si(111) Surface , 1976 .

[48]  Á. Péter,et al.  Growth of stoichiometric LiNbO3 single crystals by top seeded solution growth method , 1997 .

[49]  R. L. Barns,et al.  Crystallographic and Electrooptic Properties of Cleaved LiNbO3 , 1980, Integrated and Guided Wave Optics.

[50]  I. Kubasov,et al.  XPS study of Li/Nb ratio in LiNbO 3 crystals. Effect of polarity and mechanical processing on LiNbO 3 surface chemical composition , 2016 .

[51]  L. Fu,et al.  Hartree-Fock studies of surface properties of BaTiO 3 , 1999 .

[52]  Cornelia Denz,et al.  Charge sensor and particle trap based on z-cut lithium niobate , 2013 .

[53]  P. Günter,et al.  Optical and electro-optical properties of submicrometer lithium niobate slab waveguides prepared by crystal ion slicing and wafer bonding , 2004 .

[54]  Igor Lubomirsky,et al.  Water Freezes Differently on Positively and Negatively Charged Surfaces of Pyroelectric Materials , 2010, Science.

[55]  B. Rodriguez,et al.  Photoreduction of SERS-active metallic nanostructures on chemically patterned ferroelectric crystals. , 2012, ACS nano.

[56]  B. M. Gatehouse,et al.  The crystal structure of the high temperature form of niobium pentoxide , 1964 .

[57]  Steven G. Louie,et al.  Self-consistent pseudopotential method for localized configurations: molecules , 1975 .

[58]  H. Nagata Evaluation of hydroxyl content in commercial X-cut LiNbO3 wafers for optical waveguide devices , 1998 .

[59]  P. Krüger,et al.  Chapter 2 – Electronic Structure of Semiconductor Surfaces , 2000 .

[60]  S. Dunn,et al.  Influence of the Ferroelectric Nature of Lithium Niobate to Drive Photocatalytic Dye Decolorization under Artificial Solar Light , 2012 .

[61]  Thomas Bligaard,et al.  Density functional theory in surface chemistry and catalysis , 2011, Proceedings of the National Academy of Sciences.

[62]  F. Bechstedt,et al.  Semiconductor surfaces and interfaces: Their atomic and electronic structures , 1988 .

[63]  V. Gopalan,et al.  Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination , 2005 .

[64]  A. Preusser,et al.  Algorithm 671: FARB-E-2D: fill area with bicubics on rectangles—a contour plot program , 1989, TOMS.

[65]  R. Nemanich,et al.  Photoinduced Ag deposition on periodically poled lithium niobate: Wavelength and polarization screening dependence , 2011 .

[66]  K. Hori,et al.  4-Cyano-4'-octylbiphenyl , 1998 .

[67]  K. Shiraishi A New Slab Model Approach for Electronic Structure Calculation of Polar Semiconductor Surface , 1990 .

[68]  S. Kawai,et al.  Epitaxial growth of LiNbO3 thin films by excimer laser ablation method and their surface acoustic wave properties , 1992 .

[69]  P. Bagus,et al.  Adsorption and surface penetration of atomic hydrogen at the open site of Si(111): An ab initio cluster-model study , 1981 .

[70]  M. Veithen,et al.  First-principles study of the dielectric and dynamical properties of lithium niobate , 2002 .

[71]  S. Ismail-Beigi,et al.  Ferroelectric-Based Catalysis: Switchable Surface Chemistry , 2015 .

[72]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[73]  G. Barbero,et al.  An electro-optic device based on field-controlled anchoring of a nematic liquid crystal , 1998 .

[74]  S. Zauscher,et al.  Ferroelectric thin films in fluidic environments: a new interface for sensing and manipulation of matter. , 2012, Small.

[75]  K. Terabe,et al.  Photocatalytic nanoparticle deposition on LiNbO3 nanodomain patterns via photovoltaic effect , 2007 .

[76]  K. Nassau,et al.  THE DOMAIN STRUCTURE AND ETCHING OF FERROELECTRIC LITHIUM NIOBATE , 1965 .

[77]  Filipp Furche,et al.  Molecular tests of the random phase approximation to the exchange-correlation energy functional , 2001 .

[78]  Huiying Hu,et al.  Imaging of Ferroelectric Micro-Domains in X-Cut Lithium Niobate by Confocal Second Harmonic Microscopy , 2009 .

[79]  C. Noguera,et al.  Polar oxide surfaces , 2000 .

[80]  J. Bjorkholm Relative measurement of the optical nonlinearities of KDP, ADP, LiNbO 3 , and α-HIO 3 , 1968 .

[81]  U. Gerstmann,et al.  Validity of the Slater-Janak transition-state model within the LDA + U approach , 2008 .

[82]  R. Nemanich,et al.  Fabrication of metallic nanowires on a ferroelectric template via photochemical reaction , 2006 .

[83]  W. Schmidt,et al.  Phonon dispersion and zero-point renormalization of LiNbO3 from density-functional perturbation theory , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[84]  Cornelia Denz,et al.  Integrated optics on Lithium Niobate for sensing applications , 2015, Europe Optics + Optoelectronics.

[85]  R. C. Miller,et al.  Dependence of Second‐Harmonic‐Generation Coefficients of LiNbO3 on Melt Composition , 1971 .

[86]  Roberts Eglitis Ab initio hybrid DFT calculations of BaTiO3, PbTiO3, SrZrO3 and PbZrO3 (111) surfaces , 2015 .

[87]  K. Tabata,et al.  The effects of heat treatments upon NO adsorption for a single crystal of LiNbO3 , 1997 .

[88]  K. Rabe,et al.  First-Principles Studies of Ferroelectric Oxides , 2007 .

[89]  A. Pyatakov,et al.  Magnetoelectric interaction and magnetic field control of electric polarization in multiferroics , 2006 .

[90]  E. Rakova RHEED study of the (0001)LiNbO3 surface annealed at high temperature , 1993 .

[91]  Søren Dahl,et al.  The Brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts , 2001 .

[92]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[93]  Raffaele Resta,et al.  MACROSCOPIC POLARIZATION IN CRYSTALLINE DIELECTRICS : THE GEOMETRIC PHASE APPROACH , 1994 .

[94]  Steve Dunn,et al.  Influence of ferroelectricity on the photoelectric effect of LiNbO3 , 2008 .

[95]  D. Bonnell,et al.  Direct in situ determination of the polarization dependence of physisorption on ferroelectric surfaces. , 2008, Nature materials.

[96]  G. D. Boyd,et al.  LiNbO3: AN EFFICIENT PHASE MATCHABLE NONLINEAR OPTICAL MATERIAL , 1964 .

[97]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.

[98]  E. Borowiak‐Palen,et al.  Preparation and characterization of lithium niobate as a novel photocatalyst in hydrogen generation , 2008 .

[99]  E. Altman,et al.  Using ferroelectric poling to change adsorption on oxide surfaces. , 2007, Journal of the American Chemical Society.

[100]  M. Fontana,et al.  Microstructure and defects probed by Raman spectroscopy in lithium niobate crystals and devices , 2015 .

[101]  Francesco Merola,et al.  Reversible Fragmentation and Self‐Assembling of Nematic Liquid Crystal Droplets on Functionalized Pyroelectric Substrates , 2012 .

[102]  W. Schmidt,et al.  Modeling atomic force microscopy at LiNbO3 surfaces from first-principles , 2015 .

[103]  M. Aono,et al.  Structure of Atomically Smoothed LiNbO3 (0001) Surface , 2004 .

[104]  Cornelia Denz,et al.  T-junction droplet generator realised in lithium niobate crystals by laser ablation , 2014 .

[105]  M. Rohlfing,et al.  First-principles calculations of the atomic and electronic structure of SrZrO3 and PbZrO3 (001) and (011) surfaces , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[106]  Takashi Kondo,et al.  Absolute scale of second-order nonlinear-optical coefficients , 1997 .

[107]  Sohrab Ismail-Beigi,et al.  Ferroelectric oxide surface chemistry: water splitting via pyroelectricity , 2016 .

[108]  W. Schmidt,et al.  GaN/LiNbO3 (0001) interface formation calculated from first-principles , 2010 .

[109]  M. Vassalli,et al.  Surface nanoscale periodic structures in congruent lithium niobate by domain reversal patterning and differential etching , 2005 .

[110]  Y. Inoue Effects of acoustic waves-induced dynamic lattice distortion on catalytic and adsorptive properties of metal, alloy and metal oxide surfaces , 2007 .

[111]  G. Parravano Ferroelectric Transitions and Heterogenous Catalysis , 1952 .

[112]  D. Bonnell,et al.  Atomic and Electronic Structure of the BaTiO(3)(001) (sqrt[5] × sqrt[5])R26.6° Surface Reconstruction. , 2012, Physical review letters.

[113]  I. Drbohlav,et al.  Single‐crystal LiNbO3 surfaces processed in low‐temperature hydrogen plasma: XPS, REELS and AFM study , 2002 .

[114]  W. Schmidt,et al.  Charge compensation by long-period reconstruction in strongly polar lithium niobate surfaces , 2013 .

[115]  Scheffler,et al.  Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111). , 1992, Physical review. B, Condensed matter.

[116]  Richard M. Osgood,et al.  Fabrication of single-crystal lithium niobate films by crystal ion slicing , 1998 .

[117]  Shin-Tson Wu,et al.  Adaptive liquid crystal lens with large focal length tunability. , 2006, Optics express.

[118]  A. Zrenner,et al.  Periodic domain inversion in x-cut single-crystal lithium niobate thin film , 2016 .

[119]  W. Schmidt,et al.  Localised Phonon Modes at LiNbO3 (0001) Surfaces , 2011 .

[120]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[121]  Huiying Hu,et al.  Waveguides in single-crystal lithium niobate thin film by proton exchange. , 2015, Optics express.

[122]  W. Schmidt,et al.  Modeling intrinsic defects in LiNbO3 within the Slater-Janak transition state model. , 2014, The Journal of chemical physics.

[123]  F. Finocchi,et al.  Polarity of oxide surfaces and nanostructures , 2007 .

[124]  Mahmoud Shahabadi,et al.  Sub-terahertz on–off switch based on a two-dimensional photonic crystal infiltrated by liquid crystals , 2008 .

[125]  F. Bechstedt Principles of Surface Physics , 2003 .

[126]  Peter J. Smith,et al.  Continuous wave ultraviolet radiation induced frustration of etching in lithium niobate single crystals , 2003 .

[127]  D. Vanderbilt,et al.  Ab initio study of BaTiO 3 and PbTiO 3 surfaces in external electric fields , 2000, cond-mat/0009288.

[128]  Woochul Yang,et al.  GaN film growth on LiNbO3 surfaces using molecular beam epitaxy , 2009 .

[129]  W. Schmidt,et al.  Defect complexes in congruentLiNbO3and their optical signatures , 2015 .

[130]  Leslie Y Yeo,et al.  Ultrafast microfluidics using surface acoustic waves. , 2009, Biomicrofluidics.

[131]  Stephen Jesse,et al.  Direct Probing of Charge Injection and Polarization‐Controlled Ionic Mobility on Ferroelectric LiNbO3 Surfaces , 2014, Advanced materials.

[132]  E. Soergel,et al.  Quantitative measurement of the surface charge density , 2009, 1009.1902.

[133]  Y. Tokura,et al.  Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. , 2006, Physical review letters.

[134]  Yanjing Su,et al.  Stability of nano-scale ferroelectric domains in a LiNbO3 single crystal: The role of surface energy and polar molecule adsorption , 2012 .

[135]  J P Carrico,et al.  Thermally stimulated field emission from pyroelectric LiNbO3 , 1974 .

[136]  Vanderbilt,et al.  Effect of quantum fluctuations on structural phase transitions in SrTiO3 and BaTiO3. , 1995, Physical review. B, Condensed matter.

[137]  W. Schmidt,et al.  Barium titanate ground- and excited-state properties from first-principles calculations , 2011 .

[138]  W. Winiwarter,et al.  How a century of ammonia synthesis changed the world , 2008 .

[139]  Wolf Gero Schmidt,et al.  Lithium niobateX-cut,Y-cut, andZ-cut surfaces fromab initiotheory , 2010 .

[140]  F. Baida,et al.  Enhanced Electro-optical Lithium Niobate Photonic Crystal Wire Waveguide on a Smart-cut Thin Film References and Links , 2022 .

[141]  V. Gopalan,et al.  Stability of intrinsic defects and defect clusters in LiNbO3 from density functional theory calculations , 2008 .

[142]  Robert L. Byer,et al.  Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals , 1976 .

[143]  Gwo-Bin Lee,et al.  Active micro-mixers using surface acoustic waves on Y-cut 128° LiNbO3 , 2006 .

[144]  Roberto Car,et al.  Nuclear quantum effects in water. , 2008, Physical review letters.

[145]  A. Michaelides,et al.  Ice nanoclusters at hydrophobic metal surfaces. , 2007, Nature materials.

[146]  A. Rappe,et al.  Polarization dependence of palladium deposition on ferroelectric lithium niobate (0001) surfaces. , 2011, Physical review letters.

[147]  E. Bourim,et al.  Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals , 2006 .

[148]  Ji-wen Liu,et al.  Room temperature ferromagnetism of nonmagnetic element Ca-doped LiNbO3 films , 2014 .

[149]  A. Gruverman,et al.  Polarization-dependent electron affinity of LiNbO3 surfaces , 2004 .

[150]  B. D. Kay,et al.  The adsorption and desorption of water on single crystal MgO(100): The role of surface defects , 1996 .

[151]  H. Fujioka,et al.  GaN heteroepitaxial growth on LiNbO3(0001) step substrates with AlN buffer layers , 2005 .

[152]  J. Nørskov,et al.  Insights into ammonia synthesis from first-principles , 2006 .

[153]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[154]  Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices , 2002, cond-mat/0211421.

[155]  W. Schmidt,et al.  Vibrational properties of the LiNbO3 z-surfaces , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[156]  U. Mishra,et al.  LiNbO3 thin film growth on (0001)-GaN , 2005 .

[157]  S. Ismail-Beigi,et al.  Ferroelectrics: A pathway to switchable surface chemistry and catalysis , 2016 .

[158]  E. Ramos-Moore,et al.  Modification of ferroelectric hysteresis in Pb(Nb,Zr,Ti)O3 thin films induced by CO2 adsorption , 2011 .

[159]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[160]  Artur F Izmaylov,et al.  Influence of the exchange screening parameter on the performance of screened hybrid functionals. , 2006, The Journal of chemical physics.

[161]  Wolfgang Sohler,et al.  Ferroelectric microdomain reversal on Y-cut LiNbO3 surfaces , 1991, Other Conferences.

[162]  D. Herschbach,et al.  Influence of Vibrations on Molecular Structure Determinations. II. Average Structures Derived from Spectroscopic Data , 1962 .

[163]  P. Magnante,et al.  Efficient Second‐Harmonic Generation with Diffraction‐Limited and High‐Spectral‐Radiance Nd‐Glass Lasers , 1969 .

[164]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[165]  W. Schmidt,et al.  Polarization-dependent methanol adsorption on lithium niobate Z-cut surfaces , 2012 .

[166]  Anna N. Morozovska,et al.  Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy , 2007 .

[167]  U. V. Waghmare,et al.  Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO 3 , 1997 .

[168]  A. Rappe,et al.  Influence of ferroelectric polarization on the equilibrium stoichiometry of lithium niobate (0001) surfaces. , 2008, Physical review letters.

[169]  G. G. Bentini,et al.  Structural and compositional characterization of X-cut LiNbO3 crystals implanted with high energy oxygen and carbon ions , 2005 .

[170]  T. P. Pearl,et al.  Liquid crystal deposition on poled, single crystalline lithium niobate , 2008 .

[171]  A. Blázquez-Castro,et al.  Photovoltaic versus optical tweezers. , 2011, Optics express.

[172]  Rare-earth silicide thin films on the Si(111) surface , 2016 .

[173]  P. Venkata Laxma Reddy,et al.  Emerging green chemical technologies for the conversion of CH4 to value added products , 2013 .

[174]  M. Bazzan,et al.  Polaronic deformation at theFe2+/3+impurity site inFe:LiNbO3crystals , 2015 .

[175]  Statistical Physics Course material with JAVA applets , .

[176]  W. Schmidt,et al.  IntrinsicLiNbO3point defects from hybrid density functional calculations , 2014 .

[177]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[178]  E. Wang,et al.  Water adsorption on metal surfaces: A general picture from density functional theory studies , 2004 .

[179]  Structure analysis of stoichiometric LiNbO3(0 0 0 1) surfaces using low-energy neutral scattering spectroscopy , 2003 .

[180]  T. Chong,et al.  Flux growth and morphology study of stoichiometric lithium niobate crystals , 2003 .

[181]  Thomas Bligaard,et al.  Exploring the limits: A low-pressure, low-temperature Haber–Bosch process , 2014 .

[182]  K. Terabe,et al.  Nanoscale chemical etching of near-stoichiometric lithium tantalate , 2005 .

[183]  L. Bengtsson,et al.  Dipole correction for surface supercell calculations , 1999 .

[184]  Paolo Mazzoldi,et al.  Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization , 2002 .

[185]  P. Günter,et al.  Ion-sliced lithium niobate thin films for active photonic devices , 2009 .

[186]  Sergei V. Kalinin,et al.  Ferroelectric Lithography of Multicomponent Nanostructures , 2004 .

[187]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[188]  M. Maeda,et al.  Humidity Dependence of Surface Resistances of LiNbO3 and LiTaO3 Single Crystals , 1992 .

[189]  T. J. Sono,et al.  Reflection second harmonic generation on a z -cut congruent lithium niobate crystal , 2006 .

[190]  Y. Noguchi,et al.  Enhanced photovoltaic currents in strained Fe‐doped LiNbO3 films , 2015 .

[191]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[192]  W. Schmidt,et al.  Modeling LiNbO3 Surfaces at Ambient Conditions , 2014 .

[193]  Yousuke Nagasawa,et al.  The topmost structure of annealed single crystal of LiNbO3 , 1998 .

[194]  M. Bazzan,et al.  A systematic study of the chemical etching process on periodically poled lithium niobate structures , 2005 .

[195]  W. Schmidt,et al.  Imaging of the Ferroelectric Domain Structures by Confocal Raman Spectroscopy , 2011 .

[196]  K. Rabe,et al.  Microscopic model of ferroelectricity in stress-free PbTiO3 ultrathin films , 1999, cond-mat/9911354.

[197]  U. Gerstmann,et al.  Efficient tight-binding approach for the study of strongly correlated systems , 2007 .

[198]  J. Ichikawa,et al.  Effect of Hydroxyl Content on Thermally Induced Change in Surface Morphology of Lithium Niobate (0001) Substrates , 2005 .

[199]  T. Andreu,et al.  Partial Oxidation of Methane to Methanol Using Bismuth-Based Photocatalysts , 2014 .

[200]  C. Bethea,et al.  Nonlinear Susceptibility of GaP; Relative Measurement and Use of Measured Values to Determine a Better Absolute Value , 1972 .

[201]  D. Vanderbilt,et al.  Ab initio calculations of BaTiO3 and PbTiO3 (001) and (011) surface structures , 2007, 0710.2112.

[202]  T. I. Grigorieva,et al.  Nanofaceting of LiNbO3 X-cut surface by high temperature annealing and titanium diffusion , 2003 .

[203]  V. Dierolf,et al.  Influence of ferroelectric domain walls on the Raman scattering process in lithium tantalate and niobate. , 2012, Optics Letters.

[204]  R. C. Miller,et al.  TEMPERATURE DEPENDENCE OF THE OPTICAL PROPERTIES OF FERROELECTRIC LiNbO3 AND LiTaO3 , 1966 .

[205]  Mercedes Carrascosa,et al.  LiNbO3: A photovoltaic substrate for massive parallel manipulation and patterning of nano-objects , 2015 .

[206]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[207]  E. I. Givargizov,et al.  Growth of Crystals , 2012 .

[208]  J. Dumas,et al.  Stoechiométrie des monocristaux de métaniobate de lithium , 1968 .

[209]  J. Nørskov,et al.  Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations. , 2009, Journal of the American Chemical Society.

[210]  L. Yurchenko,et al.  Improvement of LiNbO3 Microstructure by Crystal Growth with Potassium , 1992 .

[211]  T. Taira,et al.  Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature , 2003 .

[212]  G. Rohrer,et al.  Spatial Separation of Photochemical Oxidation and Reduction Reactions on the Surface of Ferroelectric BaTiO3 , 2001 .

[213]  G. Namkoong,et al.  III-nitride integration on ferroelectric materials of lithium niobate by molecular beam epitaxy , 2005 .

[214]  Meyer,et al.  Compositional inversion symmetry breaking in ferroelectric perovskites , 2000, Physical review letters.

[215]  S. Dunn,et al.  Linbo3 - A new material for artificial photosynthesis , 2011, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[216]  E. Altman,et al.  Geometric and electronic structure of positively and negatively poled LiNbO3 (0001) surfaces , 2007 .

[217]  E. Dieguez,et al.  Etching effect on periodic domain structures of lithium niobate crystals , 1998 .

[218]  R. Eason,et al.  Surface domain engineering in congruent lithium niobate single crystals: A route to submicron periodic poling , 2002, 1210.1374.

[219]  G. D. Miller,et al.  Periodically poled lithium niobate: Modeling, fabrication, and nonlinear optical performance , 1998 .

[220]  V. Quiring,et al.  Depth-Resolved Analysis of Ferroelectric Domain Structures in Ti:PPLN Waveguides by Nonlinear Confocal Laser Scanning Microscopy , 2007 .

[221]  Nicola A. Spaldin,et al.  The Renaissance of Magnetoelectric Multiferroics , 2005, Science.

[222]  Kei Kobayashi,et al.  Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy , 2005 .

[223]  Gary Cook,et al.  Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains , 1998 .

[224]  Olga Dulub,et al.  Novel stabilization mechanism on polar surfaces: ZnO(0001)-Zn. , 2003, Physical review letters.

[225]  Bastian E. Rapp,et al.  Surface acoustic wave biosensors: a review , 2008, Analytical and bioanalytical chemistry.

[226]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[227]  Steve Dunn,et al.  Atomic Polarization and Local Reactivity on Ferroelectric Surfaces: A New Route toward Complex Nanostructures , 2002 .

[228]  O. Dulub,et al.  Observation of the dynamical change in a water monolayer adsorbed on a ZnO surface. , 2005, Physical review letters.

[229]  A. Ougazzaden,et al.  GaN thin films on z‐ and x ‐cut LiNbO3 substrates by MOVPE , 2008 .

[230]  G. Lee Realization of ultrasmooth surface with atomic scale step structure on LiNbO3 and LiTaO3 substrates. , 2002, Optics express.

[231]  D. Jundt,et al.  III-nitride growth and characteristics on ferroelectric materials using plasma-assisted molecular beam epitaxy , 2006 .

[232]  Antao Chen,et al.  Efficient poling of electro-optic polymers in thin films and silicon slot waveguides by detachable pyroelectric crystals. , 2012, Advanced materials.

[233]  Shihshieh Huang,et al.  Identification of the pollen determinant of S-RNase-mediated self-incompatibility , 2004, Nature.