Optimality Conditions and Error Analysis of Semilinear Elliptic Control Problems with L1 Cost Functional

Semilinear elliptic optimal control problems involving the $L^1$ norm of the control in the objective are considered. Necessary and sufficient second-order optimality conditions are derived. A priori finite element error estimates for piecewise constant discretizations for the control and piecewise linear discretizations of the state are shown. Error estimates for the variational discretization of the problem in the sense of [M. Hinze, Comput. Optim. Appl., 30 (2005), pp. 45--61] are also obtained. Numerical experiments confirm the convergence rates.

[1]  Edwin Hewitt,et al.  Real And Abstract Analysis , 1967 .

[2]  Eduardo Casas,et al.  UNIFORM CONVERGENCE OF THE FEM. APPLICATIONS TO STATE CONSTRAINED CONTROL PROBLEMS , 2002 .

[3]  Georg Stadler,et al.  Elliptic optimal control problems with L1-control cost and applications for the placement of control devices , 2009, Comput. Optim. Appl..

[4]  A. Logg Automating the Finite Element Method , 2007, 1112.0433.

[5]  K. Kunisch,et al.  A duality-based approach to elliptic control problems in non-reflexive Banach spaces , 2011 .

[6]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems , 2005, Comput. Optim. Appl..

[7]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  Alfred H. Schatz,et al.  Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids: Part I. Global estimates , 1998, Math. Comput..

[10]  Michael Hinze,et al.  A Variational Discretization Concept in Control Constrained Optimization: The Linear-Quadratic Case , 2005, Comput. Optim. Appl..

[11]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[12]  Gerd Wachsmuth,et al.  Convergence and regularization results for optimal control problems with sparsity functional , 2011 .

[13]  E. Casas Boundary control of semilinear elliptic equations with pointwise state constraints , 1993 .

[14]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[15]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[16]  Stefan Wendl,et al.  Optimal Control of Partial Differential Equations , 2021, Applied Mathematical Sciences.