Wavelets on irregular point sets
暂无分享,去创建一个
[1] George Merrill Chaikin,et al. An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..
[2] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[3] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[4] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[5] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[6] Edward H. Adelson,et al. The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..
[7] S. Dubuc. Interpolation through an iterative scheme , 1986 .
[8] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[9] Charles A. Micchelli,et al. Computing surfaces invariant under subdivision , 1987, Comput. Aided Geom. Des..
[10] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[11] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[12] C. A. Michelli,et al. The design of curves and surfaces by subdivision algorithms , 1989 .
[13] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[14] S. Mallat. Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .
[15] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[16] Nira Dyn,et al. Using parameters to increase smoothness of curves and surfaces generated by subdivision , 1990, Comput. Aided Geom. Des..
[17] C. Micchelli,et al. Stationary Subdivision , 1991 .
[18] Nira Dyn,et al. Analysis of uniform binary subdivision schemes for curve design , 1991 .
[19] I. Daubechies,et al. Two-scale difference equations I: existence and global regularity of solutions , 1991 .
[20] David L. Donoho,et al. Interpolating Wavelet Transforms , 1992 .
[21] T. Eirola. Sobolev characterization of solutions of dilation equations , 1992 .
[22] L. Villemoes. Wavelet analysis of refinement equations , 1994 .
[23] Ulrich Reif,et al. A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..
[24] W. Dahmen. Stability of Multiscale Transformations. , 1995 .
[25] Joe Warren,et al. Binary Subdivision Schemes for Functions over Irregular Knot Sequences , 1995 .
[26] Wim Sweldens,et al. The lifting scheme: a construction of second generation wavelets , 1998 .
[27] Jean Schweitzer,et al. Analysis and application of subdivision surfaces , 1996 .
[28] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[29] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[30] D. Zorin. Ck Continuity of Subdivision Surfaces , 1996 .
[31] Thierry BLUzAbstract. SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .
[32] Paul S. Heckbert,et al. Survey of Polygonal Surface Simplification Algorithms , 1997 .
[33] Igor Guskov,et al. Multivariate Subdivision Schemes And Divided Differences , 1998 .
[34] Peter Schröder,et al. Multiresolution signal processing for meshes , 1999, SIGGRAPH.
[35] I. Daubechies,et al. Regularity of Irregular Subdivision , 1999 .
[36] Wim Sweldens,et al. Building your own wavelets at home , 2000 .
[37] Ingrid Daubechies,et al. Commutation for Irregular Subdivision , 2001 .