Wavelets on irregular point sets

In this article we review techniques for building and analysing wavelets on irregular point sets in one and two dimensions. We discuss current results both on the practical and theoretical side. In particular, we focus on subdivision schemes and commutation rules. Several examples are included.

[1]  George Merrill Chaikin,et al.  An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..

[2]  M. Sabin,et al.  Behaviour of recursive division surfaces near extraordinary points , 1978 .

[3]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[4]  E. Catmull,et al.  Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .

[5]  Richard F. Riesenfeld,et al.  A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Edward H. Adelson,et al.  The Laplacian Pyramid as a Compact Image Code , 1983, IEEE Trans. Commun..

[7]  S. Dubuc Interpolation through an iterative scheme , 1986 .

[8]  Charles T. Loop,et al.  Smooth Subdivision Surfaces Based on Triangles , 1987 .

[9]  Charles A. Micchelli,et al.  Computing surfaces invariant under subdivision , 1987, Comput. Aided Geom. Des..

[10]  Nira Dyn,et al.  A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..

[11]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[12]  C. A. Michelli,et al.  The design of curves and surfaces by subdivision algorithms , 1989 .

[13]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[14]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[15]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[16]  Nira Dyn,et al.  Using parameters to increase smoothness of curves and surfaces generated by subdivision , 1990, Comput. Aided Geom. Des..

[17]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[18]  Nira Dyn,et al.  Analysis of uniform binary subdivision schemes for curve design , 1991 .

[19]  I. Daubechies,et al.  Two-scale difference equations I: existence and global regularity of solutions , 1991 .

[20]  David L. Donoho,et al.  Interpolating Wavelet Transforms , 1992 .

[21]  T. Eirola Sobolev characterization of solutions of dilation equations , 1992 .

[22]  L. Villemoes Wavelet analysis of refinement equations , 1994 .

[23]  Ulrich Reif,et al.  A unified approach to subdivision algorithms near extraordinary vertices , 1995, Comput. Aided Geom. Des..

[24]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[25]  Joe Warren,et al.  Binary Subdivision Schemes for Functions over Irregular Knot Sequences , 1995 .

[26]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[27]  Jean Schweitzer,et al.  Analysis and application of subdivision surfaces , 1996 .

[28]  Leif Kobbelt,et al.  Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.

[29]  Peter Schröder,et al.  Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.

[30]  D. Zorin Ck Continuity of Subdivision Surfaces , 1996 .

[31]  Thierry BLUzAbstract SIMPLE REGULARITY CRITERIA FOR SUBDIVISION SCHEMES , 1997 .

[32]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[33]  Igor Guskov,et al.  Multivariate Subdivision Schemes And Divided Differences , 1998 .

[34]  Peter Schröder,et al.  Multiresolution signal processing for meshes , 1999, SIGGRAPH.

[35]  I. Daubechies,et al.  Regularity of Irregular Subdivision , 1999 .

[36]  Wim Sweldens,et al.  Building your own wavelets at home , 2000 .

[37]  Ingrid Daubechies,et al.  Commutation for Irregular Subdivision , 2001 .