Generalizations of Dirac's theorem in Hamiltonian graph theory - A survey

Abstract Dirac showed in 1952 that every graph of order n is Hamiltonian if any vertex is of degree at least n 2 . This result has played an important role in extremal Hamiltonian graph theory. This paper is a survey on some recent results on generalization of Dirac’s theorem.

[1]  Liu Yiping,et al.  A k-HAMILTON-NICE SEQUENCE , 1992 .

[2]  O. Ore Note on Hamilton Circuits , 1960 .

[3]  Chie Nara On Sufficient Conditions for a Graph to be Hamiltonian , 1980 .

[4]  I. Fournier Longest Cycles in 2-Connected Graphs of Independence Number α , 1985 .

[5]  Bill Jackson,et al.  Longest cycles in 3-connected cubic graphs , 1986, J. Comb. Theory, Ser. B.

[6]  Huiqing Liu,et al.  Relative Length of Longest Paths and Cycles in Graphs , 2007, Graphs Comb..

[7]  Ronald J. Gould,et al.  Advances on the Hamiltonian Problem – A Survey , 2003, Graphs Comb..

[8]  Tomoki Yamashita,et al.  A degree sum condition with connectivity for relative length of longest paths and cycles , 2009, Discret. Math..

[9]  Richard H. Schelp,et al.  Hamiltonian graphs with neighborhood intersections , 1994, J. Graph Theory.

[10]  Wayne Goddard,et al.  Weakly pancyclic graphs , 1998, J. Graph Theory.

[11]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[12]  Bill Jackson,et al.  Hamiltonicity of regular 2-connected graphs , 1996, J. Graph Theory.

[13]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[14]  Ladislav Stacho,et al.  Locally Pancyclic Graphs , 1999, J. Comb. Theory, Ser. B.

[15]  Hao Li,et al.  Hamilton cycles in regular 3-connected graphs , 1992, Discret. Math..

[16]  Harold Davenport On the Minimum of a Ternary Cubic Form , 1944 .

[17]  V. Chvátal On Hamilton's ideals , 1972 .

[18]  Nicos Christofides,et al.  Conditions for the existence of Hamiltonian circuits in graphs based on vertex degrees , 1985 .

[19]  Douglas Bauer,et al.  A generalization of a result of Häggkvist and Nicoghossian , 1989, J. Comb. Theory, Ser. B.

[20]  E. Schmeichel,et al.  Some extensions of Ore's theorem , 1985 .

[21]  Bill Jackson,et al.  Edge-Disjoint Hamilton Cycles in Regular Graphs of Large Degree , 1979 .

[22]  Hao Li On Cycles in 3-Connected Graphs , 2000, Graphs Comb..

[23]  Odile Favaron,et al.  An Ore-type condition for pancyclability , 1999, Discret. Math..

[24]  Margit Voigt,et al.  A not 3-choosable planar graph without 3-cycles , 1995, Discret. Math..

[25]  Zhou Sanming Disjoint Hamiltonian cycles in fan 2 k -type graphs , 1993 .

[26]  R Shi THE ORE-TYPE CONDITIONS ON PANCYCLISM OF HAMILTONIAN GRAPHS , 1987 .

[27]  Zh. G. Nikoghosyan,et al.  Long Cycles in 1-tough Graphs , 2014 .

[28]  Kenta Ozeki,et al.  A Degree Sum Condition Concerning the Connectivity and the Independence Number of a Graph , 2008, Graphs Comb..

[29]  A. Bigalke,et al.  Über Hamiltonsche Kreise und unabhängige Ecken in Graphen , 1979 .

[30]  A. Pawel Wojda,et al.  The Geng-Hua Fan conditions for pancyclic or Hamilton-connected graphs , 1987, J. Comb. Theory, Ser. B.

[31]  Hao Li,et al.  Hamiltonicity of 4-connected graphs , 2010 .

[32]  Cun-Quan Zhang,et al.  Factorizations of regular graphs , 1992, J. Comb. Theory, Ser. B.

[33]  Hao Li,et al.  Hamiltonism, degree sum and neighborhood intersections , 1991, Discret. Math..

[34]  E. Haacke Sequences , 2005 .

[35]  Hao Li,et al.  On a Conjecture of Woodall , 2002, J. Comb. Theory, Ser. B.

[36]  Nathan Linial A lower bound for the circumference of a graph , 1976, Discret. Math..

[37]  Jean-Claude Bermond On hamiltonian walks , 1976 .

[38]  Irène Fournier,et al.  On a conjecture of bondy , 1985, J. Comb. Theory, Ser. B.

[39]  Li Hao,et al.  Edge disjoint cycles in graphs , 1989, J. Graph Theory.

[40]  Hao Li,et al.  An Implicit Degree Condition for Cyclability in Graphs , 2011, FAW-AAIM.

[41]  Zdenek Ryjácek,et al.  Claw-free graphs - A survey , 1997, Discret. Math..

[42]  Guantao Chen,et al.  Hamiltonian Graphs with Large Neighborhood Unions , 1997, Ars Comb..

[43]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[44]  Edward F. Schmeichel,et al.  Long cycles in graphs with large degree sums , 1990, Discret. Math..

[45]  Deng Xiaotie,et al.  Implicit-degrees and circumferences , 1989 .

[46]  Hao Li Circumferences in 1-tough graphs , 1995, Discret. Math..

[47]  Genghua Fan,et al.  Longest cycles in regular graphs , 1985, J. Comb. Theory, Ser. B.

[48]  李皓 HAMILTONIAN CYCLES IN REGULAR GRAPHS , 1989 .

[49]  Huiqing Liu,et al.  Two sufficient conditions for dominating cycles , 2005, J. Graph Theory.

[50]  John Adrian Bondy,et al.  Large cycles in graphs , 1971, Discret. Math..

[51]  Bill Jackson Hamilton cycles in regular 2-connected graphs , 1980, J. Comb. Theory, Ser. B.

[52]  Bill Jackson,et al.  Hamiltonicity of regular 2-connected graphs , 1996 .

[53]  Bill Jackson,et al.  Hamilton Cycles in 2-Connected Regular Bipartite Graphs , 1994, J. Comb. Theory, Ser. B.

[54]  Tomoki Yamashita,et al.  A degree sum condition for longest cycles in 3-connected graphs , 2007 .

[55]  Mekkia Kouider,et al.  Hamilton cycles in regular 2-connected graphs , 1988, J. Comb. Theory, Ser. B.

[56]  Kenta Ozeki,et al.  On relative length of longest paths and cycles , 2009, J. Graph Theory.

[57]  S. Louis Hakimi,et al.  A cycle structure theorem for hamiltonian graphs , 1988, J. Comb. Theory, Ser. B.

[58]  J. A. Bondy,et al.  Basic graph theory: paths and circuits , 1996 .

[59]  Bill Jackson,et al.  Neighborhood unions and hamilton cycles , 1991, J. Graph Theory.

[60]  朱永津,et al.  IMPLICIT DEGREES AND CHVATAL’S CONDITION FOR HAMILTONICITY , 1989 .

[61]  Ronald J. Gould,et al.  A new sufficient condition for Hamiltonian graphs , 2006 .

[62]  Alan M. Frieze,et al.  Hamiltonian cycles in random regular graphs , 1984, J. Comb. Theory, Ser. B.

[63]  R. Häggkvist,et al.  A Note on Maximal Cycles in 2-Connected Graphs , 1985 .

[64]  Guojun Li Edge disjoint Hamilton cycles in graphs , 2000, J. Graph Theory.

[65]  Geng-Hua Fan,et al.  New sufficient conditions for cycles in graphs , 1984, J. Comb. Theory, Ser. B.

[66]  H. A. Jung On Maximal Circuits in Finite Graphs , 1978 .

[67]  Bill Jackson,et al.  Dominating cycles in regular 3-connected graphs , 1992, Discret. Math..

[68]  Odile Favaron,et al.  Sequences, claws and cyclability of graphs , 1996 .

[69]  Hao Li,et al.  An Implicit Degree Condition for Pancyclicity of Graphs , 2013, Graphs Comb..

[70]  Denise Amar,et al.  Pancyclism in hamiltonian graphs , 1991, Discret. Math..

[71]  Hao Li,et al.  Cyclability of 3-connected graphs , 2000, J. Graph Theory.

[72]  Shi Ronghua,et al.  2-neighborhoods and Hamiltonian conditions , 1992 .

[73]  Béla Bollobás,et al.  Weakly Pancyclic Graphs , 1999, J. Comb. Theory, Ser. B.

[74]  Guantao Chen,et al.  Hamiltonian graphs involving distances , 1992, J. Graph Theory.

[75]  Béla Bollobás,et al.  Cycles through specified vertices , 1993, Comb..

[76]  刘振宏,et al.  EDGE-DISJOINT HAMILTONIAN CYCLES IN GRAPHS , 1991 .

[77]  Y Zhu,et al.  2-CONNECTED K-REGULAR GRAPHS ON AT MOST 3k+3 VERTICES TO BE HAMILTONIAN , 1985 .

[78]  Hao Li,et al.  An implicit degree condition for hamiltonian graphs , 2012, Discret. Math..

[79]  Sanming Zhou Disjoint Hamiltonian cycles in fan 2k-type graphs , 1993, J. Graph Theory.

[80]  Katsuhiro Ota,et al.  Cycles through prescribed vertices with large degree sum , 1995, Discret. Math..

[81]  Xueliang Li,et al.  A σ3 type condition for heavy cycles in weighted graphs , 2001, Discuss. Math. Graph Theory.

[82]  Roland Häggkvist,et al.  A remark on Hamiltonian cycles , 1981, J. Comb. Theory, Ser. B.

[83]  Cun-Quan Zhang,et al.  Long path connectivity of regular graphs , 1991, Discret. Math..

[84]  Hao Li,et al.  Removable matchings and hamiltonian cycles , 2009, Discret. Math..

[85]  D. R. Woodall The binding number of a graph and its Anderson number , 1973 .

[86]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[87]  Zhu Yongjin,et al.  An Improvement of Jackson's Result on Hamilton Cycles in 2-Connected Regular Graphs , 1985 .

[88]  Min Aung On the circumference of triangle-free and regular graphs = Über den Kreisumfang der dreieckfreien und regulären Graphen , 1988 .

[89]  Tomoki Yamashita,et al.  Dominating cycles in graphs with high connectivity , 2009, Ars Comb..

[90]  Richard H. Schelp,et al.  Neighborhood unions and hamiltonian properties in graphs , 1989, J. Comb. Theory, Ser. B.

[91]  Tomoki Yamashita,et al.  Vertex-dominating cycles in 2-connected bipartite graphs , 2007, Discuss. Math. Graph Theory.

[92]  Xiaotie Deng,et al.  Implicit-degrees and circumferences , 1989, Graphs Comb..

[93]  Hikoe Enomoto,et al.  Relative length of long paths and cycles in graphs with large degree sums , 1995, J. Graph Theory.

[94]  Stephan Brandt,et al.  A Sufficient Condition for All Short Cycles , 1997, Discret. Appl. Math..

[95]  Tomoki Yamashita,et al.  On degree sum conditions for long cycles and cycles through specified vertices , 2008, Discret. Math..

[96]  Bing Chen,et al.  An implicit degree condition for long cycles in 2-connected graphs , 2006, Appl. Math. Lett..

[97]  Ronald J. Gould,et al.  Updating the hamiltonian problem - A survey , 1991, J. Graph Theory.

[98]  Ingo Schiermeyer,et al.  Small Cycles in Hamiltonian Graphs , 1997, Discret. Appl. Math..

[99]  Paul Erdös,et al.  A note on Hamiltonian circuits , 1972, Discret. Math..

[100]  Mingchu Li,et al.  Two edge-disjoint hamiltonian cycles in graphs , 1994, Graphs Comb..

[101]  John Adrian Bondy,et al.  A method in graph theory , 1976, Discret. Math..

[102]  Jianping Li,et al.  Cycles through subsets with large degree sums , 1997, Discret. Math..

[103]  Guanghui Wang,et al.  The k-dominating cycles in graphs , 2010, Eur. J. Comb..

[104]  D. R. Woodall Maximal circuits of graphs. I , 1976 .

[105]  Richard H. Schelp,et al.  Edge-disjoint Hamiltonian cycles , 1985 .

[106]  Jan van den Heuvel,et al.  A generalization of Ore's Theorem involving neighborhood unions , 1990, Discret. Math..

[107]  B. Wei Longest cycles in 3-connected graphs , 1997, Discret. Math..

[108]  Odile Favaron,et al.  Pancyclism and small cycles in graphs , 1996, Discuss. Math. Graph Theory.

[109]  S. Hakimi,et al.  Pancyclic graphs and a conjecture of Bondy and Chvátal , 1974 .

[110]  Hao Li,et al.  A Note on a Generalisation of Ore’s Condition , 2005, Graphs Comb..

[111]  J D HANCOCK,et al.  Unsolved problems , 1987 .