Stochastic Approximation and Recursive Algorithms and Applications

Introduction 1 Review of Continuous Time Models 1.1 Martingales and Martingale Inequalities 1.2 Stochastic Integration 1.3 Stochastic Differential Equations: Diffusions 1.4 Reflected Diffusions 1.5 Processes with Jumps 2 Controlled Markov Chains 2.1 Recursive Equations for the Cost 2.2 Optimal Stopping Problems 2.3 Discounted Cost 2.4 Control to a Target Set and Contraction Mappings 2.5 Finite Time Control Problems 3 Dynamic Programming Equations 3.1 Functionals of Uncontrolled Processes 3.2 The Optimal Stopping Problem 3.3 Control Until a Target Set Is Reached 3.4 A Discounted Problem with a Target Set and Reflection 3.5 Average Cost Per Unit Time 4 Markov Chain Approximation Method: Introduction 4.1 Markov Chain Approximation 4.2 Continuous Time Interpolation 4.3 A Markov Chain Interpolation 4.4 A Random Walk Approximation 4.5 A Deterministic Discounted Problem 4.6 Deterministic Relaxed Controls 5 Construction of the Approximating Markov Chains 5.1 One Dimensional Examples 5.2 Numerical Simplifications 5.3 The General Finite Difference Method 5.4 A Direct Construction 5.5 Variable Grids 5.6 Jump Diffusion Processes 5.7 Reflecting Boundaries 5.8 Dynamic Programming Equations 5.9 Controlled and State Dependent Variance 6 Computational Methods for Controlled Markov Chains 6.1 The Problem Formulation 6.2 Classical Iterative Methods 6.3 Error Bounds 6.4 Accelerated Jacobi and Gauss-Seidel Methods 6.5 Domain Decomposition 6.6 Coarse Grid-Fine Grid Solutions 6.7 A Multigrid Method 6.8 Linear Programming 7 The Ergodic Cost Problem: Formulation and Algorithms 7.1 Formulation of the Control Problem 7.2 A Jacobi Type Iteration 7.3 Approximation in Policy Space 7.4 Numerical Methods 7.5 The Control Problem 7.6 The Interpolated Process 7.7 Computations 7.8 Boundary Costs and Controls 8 Heavy Traffic and Singular Control 8.1 Motivating Examples &nb