Evaluating dimensionality reduction techniques for visual category recognition using rényi entropy

Visual category recognition is a difficult task of significant interest to the machine learning and vision community. One of the principal hurdles is the high dimensional feature space. This paper evaluates several linear and non-linear dimensionality reduction techniques. A novel evaluation metric, the rényi entropy of the inter-vector euclidean distance distribution, is introduced. This information theoretic measure judges the techniques on their preservation of structure in lower-dimensional sub-space. The popular dataset, Caltech-101 is utilized in the experiments. The results indicate that the techniques which preserve local neighborhood structure performed best amongst the techniques evaluated in this paper.

[1]  Deli Zhao,et al.  Linear local tangent space alignment and application to face recognition , 2007, Neurocomputing.

[2]  Charu C. Aggarwal,et al.  On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.

[3]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[4]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[5]  Frank Nielsen,et al.  A closed-form expression for the Sharma–Mittal entropy of exponential families , 2011, ArXiv.

[6]  Dimitris K. Agrafiotis,et al.  Stochastic proximity embedding , 2003, J. Comput. Chem..

[7]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[8]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[9]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[10]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[11]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[12]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[13]  Michael I. Jordan,et al.  Mixtures of Probabilistic Principal Component Analyzers , 2001 .

[14]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[15]  I. Jolliffe Principal Component Analysis , 2002 .

[16]  Francesco Camastra,et al.  Data dimensionality estimation methods: a survey , 2003, Pattern Recognit..

[17]  Cordelia Schmid,et al.  A performance evaluation of local descriptors , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[19]  Kari Torkkola,et al.  Linear Discriminant Analysis in Document Classification , 2007 .

[20]  Cordelia Schmid,et al.  Dataset Issues in Object Recognition , 2006, Toward Category-Level Object Recognition.

[21]  ZhangJ.,et al.  Local Features and Kernels for Classification of Texture and Object Categories , 2007 .

[22]  Heiko Hoffmann,et al.  Kernel PCA for novelty detection , 2007, Pattern Recognit..

[23]  Ann B. Lee,et al.  Diffusion maps and coarse-graining: a unified framework for dimensionality reduction, graph partitioning, and data set parameterization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Nicolas Pinto,et al.  Why is Real-World Visual Object Recognition Hard? , 2008, PLoS Comput. Biol..

[25]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[26]  Peter J. Bickel,et al.  Maximum Likelihood Estimation of Intrinsic Dimension , 2004, NIPS.

[27]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[28]  Shuicheng Yan,et al.  Neighborhood preserving embedding , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[29]  I K Fodor,et al.  A Survey of Dimension Reduction Techniques , 2002 .

[30]  Pietro Perona,et al.  Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.