Correlation-based band-ordering heuristic for lossless compression of hyperspectral sounder data

A novel algorithm for the lossless compression of hyperspectral sounding data is presented. The algorithm rests upon an efficient technique for three-dimensional image band reordering. The technique is based on a correlation factor. The correlation-based band ordering gives 5% higher compression ratios than natural ordering does. On the other hand, the obtained compression ratios are within a percent of those produced by optimal ordering, but the computational time is much lower compared to the optimal ordering. The low computational complexity of the algorithm is based on the use of correlation for the band ordering. Moreover, the algorithm results in 7% to 12% improvement over fast nearest neighbor reordering scheme versions of JPEG-LS and the context-based adaptive lossless image codec algorithms.

[1]  H. H. Aumann,et al.  AIRS, the first hyper-spectral infrared sounder for operational weather forecasting , 2001, 2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542).

[2]  Luciano Alparone,et al.  Reversible compression of hyper-spectral imagery through inter-band fuzzy prediction and context coding , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[3]  William L. Smith,et al.  GIFTS - the precursor geostationary satellite component of the future Earth Observing System , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[4]  Stephen R. Tate,et al.  Band ordering in lossless compression of multispectral images , 1997, Proceedings of IEEE Data Compression Conference (DCC'94).

[5]  Arto Kaarna,et al.  Improved back end for integer PCA and wavelet transforms for lossless compression of multispectral images , 2002, Object recognition supported by user interaction for service robots.

[6]  G. Fernandez i Ubiergo Lossless region-based multispectral image compression , 1997 .

[7]  Timothy J. Schmit,et al.  Data compression studies for NOAA Hyperspectral Environmental Suite (HES) using 3D integer wavelet transforms with 3D set partitioning in hierarchical trees , 2004, SPIE Remote Sensing.

[8]  Nasir D. Memon,et al.  Context-based, adaptive, lossless image coding , 1997, IEEE Trans. Commun..

[9]  Timothy J. Schmit,et al.  Lossless Data Compression for Infrared Hyperspectral Sounders-An Overview , 2003 .

[10]  G Fern Andez I Ubiergo Lossless Region-based Multispectral Image Compression , .

[11]  Allen Van Gelder,et al.  Computer Algorithms: Introduction to Design and Analysis , 1978 .

[12]  S. Srinivasan,et al.  Eigen wavelet: hyperspectral image compression algorithm , 1999, Proceedings DCC'99 Data Compression Conference (Cat. No. PR00096).

[13]  Peter Schlüssel,et al.  IASI on board MetOp: Project status and scientific preparation , 2002 .

[14]  H. Bloom,et al.  The Cross-track Infrared Sounder (CrIS): a sensor for operational meteorological remote sensing , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[15]  Shen-En Qian,et al.  Study of real-time lossless data compression for hyperspectral imagery , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[16]  Giovanni Motta,et al.  High performance compression of hyperspectral imagery with reduced search complexity in the compressed domain , 2004, Data Compression Conference, 2004. Proceedings. DCC 2004.

[17]  Dmitry A. Shkarin,et al.  PPM: one step to practicality , 2002, Proceedings DCC 2002. Data Compression Conference.

[18]  Enrico Magli,et al.  Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC , 2004, IEEE Geoscience and Remote Sensing Letters.

[19]  Guillermo Sapiro,et al.  The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS , 2000, IEEE Trans. Image Process..

[20]  Hal Bloom The Cross-Track Infrared Sounder (CrIS): A sensor for operational meterological remote sensing , 2001 .

[21]  Timothy J. Schmit,et al.  Lossless data compression for infrared hyperspectral sounders: an update , 2004, SPIE Optics + Photonics.

[22]  G. Nigel Martin,et al.  * Range encoding: an algorithm for removing redundancy from a digitised message , 1979 .

[23]  Jarno Mielikäinen,et al.  Improved vector quantization for lossless compression of AVIRIS images , 2002, 2002 11th European Signal Processing Conference.

[24]  Jarno Mielikäinen,et al.  Clustered DPCM for the lossless compression of hyperspectral images , 2003, IEEE Trans. Geosci. Remote. Sens..

[25]  Arto Kaarna,et al.  Linear prediction in lossless compression of hyperspectral images , 2003 .

[26]  Sartaj Sahni,et al.  Analysis of algorithms , 2000, Random Struct. Algorithms.

[27]  John F. Arnold,et al.  The lossless compression of AVIRIS images by vector quantization , 1997, IEEE Trans. Geosci. Remote. Sens..