Treewidth and Counting Projected Answer Sets

In this paper, we introduce novel algorithms to solve projected answer set counting Open image in new window . #PAs asks to count the number of answer sets with respect to a given set of projection atoms, where multiple answer sets that are identical when restricted to the projection atoms count as only one projected answer set. Our algorithms exploit small treewidth of the primal graph of the input instance by dynamic programming (DP).

[1]  Rina Dechter,et al.  Propositional semantics for disjunctive logic programs , 1994, Annals of Mathematics and Artificial Intelligence.

[2]  Ilkka Niemelä,et al.  Stable Model Semantics of Weight Constraint Rules , 1999, LPNMR.

[3]  Michael Gelfond,et al.  Answer set based design of knowledge systems , 2006, Annals of Mathematics and Artificial Intelligence.

[4]  Rehan Abdul Aziz Answer set programming: founded bounds and model counting , 2015 .

[5]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[6]  T. W. Körner Exercises for Fourier Analysis : How fast can we multiply? , 1993 .

[7]  Stefan Woltran,et al.  Dynamic Programming-based QBF Solving , 2016, QBF@SAT.

[8]  Martin Gebser,et al.  Solution Enumeration for Projected Boolean Search Problems , 2009, CPAIOR.

[9]  Phokion G. Kolaitis,et al.  Subtractive reductions and complete problems for counting complexity classes , 2000 .

[10]  Johannes Klaus Fichte,et al.  TE-ETH: Lower Bounds for QBFs of Bounded Treewidth , 2019, ArXiv.

[11]  Chitta Baral,et al.  Logic Programming and Knowledge Representation , 1994, J. Log. Program..

[12]  Ton Kloks,et al.  Efficient and Constructive Algorithms for the Pathwidth and Treewidth of Graphs , 1993, J. Algorithms.

[13]  Michael Gelfond,et al.  An A Prolog decision support system for the Space Shuttle , 2001, Answer Set Programming.

[14]  Dániel Marx,et al.  Slightly superexponential parameterized problems , 2011, SODA '11.

[15]  Johannes Klaus Fichte,et al.  Exploiting Treewidth for Counting Projected Answer Sets , 2018, KR.

[16]  Dániel Marx,et al.  Double-Exponential and Triple-Exponential Bounds for Choosability Problems Parameterized by Treewidth , 2016, ICALP.

[17]  Michael Gelfond,et al.  Classical negation in logic programs and disjunctive databases , 1991, New Generation Computing.

[18]  Hans K. Buning,et al.  Propositional Logic: Deduction and Algorithms , 1999 .

[19]  Julio Saez-Rodriguez,et al.  Exhaustively characterizing feasible logic models of a signaling network using Answer Set Programming , 2013, Bioinform..

[20]  Michal Pilipczuk,et al.  Parameterized Algorithms , 2015, Springer International Publishing.

[21]  Georg Gottlob,et al.  On the computational cost of disjunctive logic programming: Propositional case , 1995, Annals of Mathematics and Artificial Intelligence.

[22]  Michael Lampis,et al.  Treewidth with a Quantifier Alternation Revisited , 2018, IPEC.

[23]  Joris van der Hoeven,et al.  Even faster integer multiplication , 2014, J. Complex..

[24]  Stefan Woltran,et al.  Exploiting Treewidth for Projected Model Counting and its Limits , 2018, SAT.

[25]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[26]  Stefan Woltran,et al.  Answer Set Solving with Bounded Treewidth Revisited , 2017, LPNMR.

[27]  Marko Samer,et al.  Algorithms for propositional model counting , 2007, J. Discrete Algorithms.

[28]  R. D. Richtmyer,et al.  Introduction to the foundations of mathematics , 1953 .

[29]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[30]  Stefan Rümmele,et al.  Tractable answer-set programming with weight constraints: bounded treewidth is not enough* , 2010, Theory and Practice of Logic Programming.

[31]  Victor W. Marek,et al.  Autoepistemic logic , 1991, JACM.

[32]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[33]  Fangzhen Lin,et al.  On Tight Logic Programs and Yet Another Translation from Normal Logic Programs to Propositional Logic , 2003, IJCAI.

[34]  François Fages,et al.  Consistency of Clark's completion and existence of stable models , 1992, Methods Log. Comput. Sci..

[35]  Miroslaw Truszczynski,et al.  Answer set programming at a glance , 2011, Commun. ACM.

[36]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[37]  Martin Gebser,et al.  Answer Set Solving in Practice , 2012, Answer Set Solving in Practice.

[38]  Ilkka Niemelä,et al.  The Answer Set Programming Paradigm , 2016, AI Mag..

[39]  Christine Froidevaux,et al.  Negation by Default and Unstratifiable Logic Programs , 1991, Theor. Comput. Sci..