The geometrical properties of irregular two-dimensional Voronoi tessellations
暂无分享,去创建一个
[1] Hassan Aref,et al. Numerical experiments on two-dimensional foam , 1992, Journal of Fluid Mechanics.
[2] D. A Aboav,et al. The arrangement of grains in a polycrystal , 1970 .
[3] R. E. Miles,et al. Monte carlo estimates of the distributions of the random polygons of the voronoi tessellation with respect to a poisson process , 1980 .
[4] J L Finney,et al. Volume occupation, environment and accessibility in proteins. The problem of the protein surface. , 1975, Journal of molecular biology.
[5] F. T. Lewis,et al. The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of cucumis , 1928 .
[6] A. S. Kravchenko,et al. Experimental investigation of normal grain growth in terms of area and topological class , 1985 .
[7] B. N. Boots,et al. The spatial arrangement of random Voronoi polygons , 1983 .
[8] L. S. Nelson,et al. The Folded Normal Distribution , 1961 .
[9] M. Ammi,et al. Arrangement of cells in Voronoi tesselations of monosize packing of discs , 1993 .
[10] J. Wejchert,et al. On the distribution of cell areas in a Voronoi network , 1986 .
[11] D. Weaire,et al. Soap, cells and statistics – random patterns in two dimensions , 1984 .
[12] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .
[13] E. Gilbert. Random Subdivisions of Space into Crystals , 1962 .
[14] Denis Weaire,et al. Some remarks on the arrangement of grains in a polycrystal , 1974 .
[15] Ian K. Crain,et al. The Monte-Carlo generation of random polygons , 1978 .
[16] G. Le Caër,et al. The Voronoi tessellation generated from eigenvalues of complex random matrices , 1990 .
[17] D. Weaire,et al. Average number of sides for the neighbours in a Poisson-Voronoi tesselation , 1994 .
[18] B. Boots,et al. Edge length properties of random Voronoi polygons , 1987 .
[19] D. P. Fraser. Voronoi statistics of hard-core systems , 1991 .
[20] R. E. Miles. On the homogeneous planar Poisson point process , 1970 .
[21] Z P Zhang,et al. Effect of packing method on the randomness of disc packings , 1996 .
[22] Atsuyuki Okabe,et al. Models of Spatial Processes , 1978 .
[23] Dietrich Stoyan,et al. Cell-area distributions of planar Voronoi mosaics , 1989 .
[24] S. Kurtz,et al. Properties of a two-dimensional Poisson-Voronoi tesselation: A Monte-Carlo study , 1993 .
[25] Stewart K. Kurtz,et al. Properties of a three-dimensional Poisson-Voronoi tesselation: A Monte Carlo study , 1992 .
[26] C. Itzykson,et al. Random geometry and the statistics of two-dimensional cells , 1984 .
[27] J. Kermode,et al. Computer simulation of a two-dimensional soap froth II. Analysis of results , 1984 .
[28] V. Icke,et al. Fragmenting the universe , 1987 .
[29] Atsuyuki Okabe,et al. Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.
[30] G. S. M. Moore,et al. The side-lengths of Voronoi polygons for random nuclei , 1993 .
[31] B. Boots,et al. The arrangement of cells in “random” networks☆ , 1982 .
[32] J. Troadec,et al. Universal properties of Voronoi tessellations of hard discs , 1992 .
[33] P. S. Sahni,et al. Computer simulation of grain growth—I. Kinetics , 1984 .
[34] Glazier,et al. Soap froth revisited: Dynamic scaling in the two-dimensional froth. , 1989, Physical review letters.