The geometrical properties of irregular two-dimensional Voronoi tessellations

Abstract We describe a parameter used to quantify the regularity of two-dimensional Voronoi tessellations based upon assemblies of ‘hard-core’ discs. The value of this parameter may vary continuously from zero, for a completely random Poisson Voronoi tessellation, to one, for a fully ordered regular hexagonal honeycomb. For various values of this parameter, 105 Voronoi cells are simulated and the statistical distributions of the number of sides per cell, the cell vertex angles, the cell edge lengths, the cell perimeters and the cell areas are each derived. The mean perimeters, areas and numbers of sides in the neighbouring cells are also investigated for n-sided cells in these tessellations. We find that, for all except the cell vertex angle distributions, the data can be adequately described by fitting either to existing models or, in the cases of the mean perimeters and mean areas of n-sided cells, to models which we propose.

[1]  Hassan Aref,et al.  Numerical experiments on two-dimensional foam , 1992, Journal of Fluid Mechanics.

[2]  D. A Aboav,et al.  The arrangement of grains in a polycrystal , 1970 .

[3]  R. E. Miles,et al.  Monte carlo estimates of the distributions of the random polygons of the voronoi tessellation with respect to a poisson process , 1980 .

[4]  J L Finney,et al.  Volume occupation, environment and accessibility in proteins. The problem of the protein surface. , 1975, Journal of molecular biology.

[5]  F. T. Lewis,et al.  The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of cucumis , 1928 .

[6]  A. S. Kravchenko,et al.  Experimental investigation of normal grain growth in terms of area and topological class , 1985 .

[7]  B. N. Boots,et al.  The spatial arrangement of random Voronoi polygons , 1983 .

[8]  L. S. Nelson,et al.  The Folded Normal Distribution , 1961 .

[9]  M. Ammi,et al.  Arrangement of cells in Voronoi tesselations of monosize packing of discs , 1993 .

[10]  J. Wejchert,et al.  On the distribution of cell areas in a Voronoi network , 1986 .

[11]  D. Weaire,et al.  Soap, cells and statistics – random patterns in two dimensions , 1984 .

[12]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[13]  E. Gilbert Random Subdivisions of Space into Crystals , 1962 .

[14]  Denis Weaire,et al.  Some remarks on the arrangement of grains in a polycrystal , 1974 .

[15]  Ian K. Crain,et al.  The Monte-Carlo generation of random polygons , 1978 .

[16]  G. Le Caër,et al.  The Voronoi tessellation generated from eigenvalues of complex random matrices , 1990 .

[17]  D. Weaire,et al.  Average number of sides for the neighbours in a Poisson-Voronoi tesselation , 1994 .

[18]  B. Boots,et al.  Edge length properties of random Voronoi polygons , 1987 .

[19]  D. P. Fraser Voronoi statistics of hard-core systems , 1991 .

[20]  R. E. Miles On the homogeneous planar Poisson point process , 1970 .

[21]  Z P Zhang,et al.  Effect of packing method on the randomness of disc packings , 1996 .

[22]  Atsuyuki Okabe,et al.  Models of Spatial Processes , 1978 .

[23]  Dietrich Stoyan,et al.  Cell-area distributions of planar Voronoi mosaics , 1989 .

[24]  S. Kurtz,et al.  Properties of a two-dimensional Poisson-Voronoi tesselation: A Monte-Carlo study , 1993 .

[25]  Stewart K. Kurtz,et al.  Properties of a three-dimensional Poisson-Voronoi tesselation: A Monte Carlo study , 1992 .

[26]  C. Itzykson,et al.  Random geometry and the statistics of two-dimensional cells , 1984 .

[27]  J. Kermode,et al.  Computer simulation of a two-dimensional soap froth II. Analysis of results , 1984 .

[28]  V. Icke,et al.  Fragmenting the universe , 1987 .

[29]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[30]  G. S. M. Moore,et al.  The side-lengths of Voronoi polygons for random nuclei , 1993 .

[31]  B. Boots,et al.  The arrangement of cells in “random” networks☆ , 1982 .

[32]  J. Troadec,et al.  Universal properties of Voronoi tessellations of hard discs , 1992 .

[33]  P. S. Sahni,et al.  Computer simulation of grain growth—I. Kinetics , 1984 .

[34]  Glazier,et al.  Soap froth revisited: Dynamic scaling in the two-dimensional froth. , 1989, Physical review letters.