CloudLight: A system for amortizing indirect lighting in real-time rendering

We introduce CloudLight, a system for computing indirect lighting in the Cloud to support real-time rendering for interactive 3D ap- plications on a user's local device. CloudLight maps the traditional graphics pipeline onto a distributed system. That differs from a single-machine renderer in three fundamental ways. First, the map- ping introduces potential asymmetry between computational re- sources available at the Cloud and local device sides of the pipeline. Second, compared to a hardware memory bus, the network intro- duces relatively large latency and low bandwidth between certain pipeline stages. Third, for multi-user virtual environments, a Cloud solution can amortize expensive global illumination costs across users. Our new CloudLight framework explores tradeoffs in differ- ent partitions of the global illumination workload between Cloud and local devices, with an eye to how available network and com- putational power influence design decisions and image quality. We describe the tradeoffs and characteristics of mapping three known lighting algorithms to our system and demonstrate scaling for up to 50 simultaneous CloudLight users.

[1]  Turner Whitted,et al.  An improved illumination model for shaded display , 1979, CACM.

[2]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1988, SIGGRAPH.

[3]  Edward H. Adelson,et al.  Recovering reflectance and illumination in a world of painted polyhedra , 1993, 1993 (4th) International Conference on Computer Vision.

[4]  Peter Shirley,et al.  Visual cues for imminent object contact in realistic virtual environments , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[5]  Thomas Ertl,et al.  Combining local and remote visualization techniques for interactive volume rendering in medical applications , 2000 .

[6]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[7]  Erik Reinhard,et al.  Practical Parallel Rendering , 2002, Practical Parallel Rendering.

[8]  Charles D. Hansen,et al.  Semotus Visum: a flexible remote visualization framework , 2002, IEEE Visualization, 2002. VIS 2002..

[9]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[10]  Ken Brodlie,et al.  Distributed and Collaborative Visualization , 2004, Comput. Graph. Forum.

[11]  Marc Levoy,et al.  Protected interactive 3D graphics via remote rendering , 2004, SIGGRAPH 2004.

[12]  Jason L. Mitchell,et al.  Shading in valve's source engine , 2006, SIGGRAPH Courses.

[13]  Azzedine Boukerche,et al.  Remote rendering and streaming of progressive panoramas for mobile devices , 2006, MM '06.

[14]  E. Wes Bethel,et al.  Chromium Renderserver: Scalable and Open Remote Rendering Infrastructure , 2008, IEEE Transactions on Visualization and Computer Graphics.

[15]  Maja Matijasevic,et al.  MMORPG Player actions: Network performance, session patterns and latency requirements analysis , 2009, Multimedia Tools and Applications.

[16]  Jan Kautz,et al.  Real-time global illumination for dynamic scenes , 2009, SIGGRAPH '09.

[17]  Min H. Kim,et al.  Perceptual influence of approximate visibility in indirect illumination , 2009, TAP.

[18]  Fotini-Niovi Pavlidou,et al.  VoIP: A comprehensive survey on a promising technology , 2009, Comput. Networks.

[19]  David K. McAllister,et al.  OptiX: a general purpose ray tracing engine , 2010, ACM Trans. Graph..

[20]  Robert H. Dennard,et al.  Practical Strategies for Power-Efficient Computing Technologies , 2010, Proceedings of the IEEE.

[21]  Randy H. Katz,et al.  A view of cloud computing , 2010, CACM.

[22]  Chun-Ying Huang,et al.  Measuring the latency of cloud gaming systems , 2011, ACM Multimedia.

[23]  David Klionsky A New Architecture for Cloud Rendering and Amortized Graphics , 2011 .

[24]  Sarah H. Creem-Regehr,et al.  Visual Perception from a Computer Graphics Perspective , 2011 .

[25]  Kenny Mitchell,et al.  Modular Radiance Transfer , 2011, ACM Trans. Graph..

[26]  Hans-Peter Seidel,et al.  Scalable Remote Rendering with Depth and Motion‐flow Augmented Streaming , 2011, Comput. Graph. Forum.

[27]  Walid Dabbous,et al.  Network characteristics of video streaming traffic , 2011, CoNEXT '11.

[28]  Elmar Eisemann,et al.  Interactive Indirect Illumination Using Voxel Cone Tracing , 2011, Comput. Graph. Forum.

[29]  José Alberto Hernández,et al.  An empirical study of Cloud Gaming , 2012, 2012 11th Annual Workshop on Network and Systems Support for Games (NetGames).

[30]  Hybrid Distributed Rendering , 2012 .

[31]  Klara Nahrstedt,et al.  A real-time remote rendering system for interactive mobile graphics , 2012, TOMCCAP.

[32]  Gwendal Simon,et al.  The brewing storm in cloud gaming: A measurement study on cloud to end-user latency , 2012, 2012 11th Annual Workshop on Network and Systems Support for Games (NetGames).

[33]  George Lawton,et al.  Cloud Streaming Brings Video to Mobile Devices , 2012, Computer.

[34]  Jan Kautz,et al.  The State of the Art in Interactive Global Illumination , 2012, Comput. Graph. Forum.

[35]  Morgan McGuire,et al.  Toward practical real-time photon mapping: efficient GPU density estimation , 2013, I3D '13.

[36]  Michal Iwanicki Lighting technology of the last of us , 2013, SIGGRAPH '13.

[37]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Comput. Graph. Forum.