Statistical inference for misspecified ergodic Lévy driven stochastic differential equation models

This paper deals with the estimation problem of misspecified ergodic L\'evy driven stochastic differential equation models based on high-frequency samples. We utilize the widely applicable and tractable Gaussian quasi-likelihood approach which focuses on (conditional) mean and variance structure. It is shown that the corresponding Gaussian quasi-likelihood estimators of drift and scale parameters satisfy tail probability estimates and asymptotic normality at the same rate as correctly specified case. In this process, extended Poisson equation for time-homogeneous Feller Markov processes plays an important role to handle misspecification effect. Our result confirms the practical usefulness of the Gaussian quasi-likelihood approach for SDE models, more firmly.

[1]  S. Hamadène,et al.  Existence and uniqueness of viscosity solutions for second order integro-differential equations without monotonicity conditions , 2014, 1411.2266.

[2]  Feng-Yu Wang,et al.  Gradient estimates for SDEs driven by multiplicative Lévy noise , 2013, 1301.4528.

[3]  Feng-Yu Wang Derivative Formula and Harnack Inequality for SDEs Driven by Lévy Processes , 2011, 1104.5531.

[4]  The asymptotics of misspecified MLEs for some stochastic processes: a survey , 2017 .

[5]  Hideitsu Hino,et al.  The YUIMA Project: A Computational Framework for Simulation and Inference of Stochastic Differential Equations , 2014 .

[6]  José E. Figueroa-López Small-time moment asymptotics for Lévy processes , 2008 .

[7]  Ken-iti Sato Lévy Processes and Infinitely Divisible Distributions , 1999 .

[8]  Ken-iti Sato,et al.  Operator-selfdecomposable distributions as limit distributions of processes of Ornstein-Uhlenbeck type , 1984 .

[9]  Adaptive estimation of an ergodic diffusion process based on sampled data , 2012 .

[10]  Hilmar Mai,et al.  Efficient maximum likelihood estimation for Lévy-driven Ornstein–Uhlenbeck processes , 2014, 1403.2954.

[11]  R. Bhattacharya On the functional central limit theorem and the law of the iterated logarithm for Markov processes , 1982 .

[12]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[13]  Nakahiro Yoshida,et al.  Estimation of Parameters for Diffusion Processes with Jumps from Discrete Observations , 2006 .

[14]  Hiroki Masuda,et al.  Approximate self-weighted LAD estimation of discretely observed ergodic Ornstein-Uhlenbeck processes , 2010 .

[15]  G. Barles,et al.  Second-order elliptic integro-differential equations: viscosity solutions' theory revisited , 2007, math/0702263.

[16]  A. Veretennikov,et al.  Extended Poisson equation for weakly ergodic Markov processes , 2013 .

[17]  A. Veretennikov,et al.  On the poisson equation and diffusion approximation 3 , 2001, math/0506596.

[18]  Hiroki Masuda,et al.  Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps , 2007 .

[19]  Denis Belomestny,et al.  Estimation and Calibration of Lévy Models via Fourier Methods , 2015 .

[20]  S. Meyn,et al.  Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.

[21]  T. Komorowski,et al.  Central limit theorem for Markov processes with spectral gap in the Wasserstein metric , 2011, 1102.1842.

[22]  R. Adams Some integral inequalities with applications to the imbedding of Sobolev spaces defined over irregular domains , 1973 .

[23]  N. Yoshida Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations , 2011 .

[24]  Asymptotics for functionals of self-normalized residuals of discretely observed stochastic processes , 2013 .

[25]  Emeline Schmisser Non-parametric adaptive estimation of the drift for a jump diffusion process , 2012, 1206.2620.

[26]  ‘Purposely misspecified’ posterior inference on the volatility of a jump diffusion process , 2018 .

[27]  Hiroki Masuda,et al.  Parametric Estimation of Lévy Processes , 2014 .

[28]  Hiroki Masuda,et al.  Convergence of Gaussian quasi-likelihood random fields for ergodic Lévy driven SDE observed at high frequency , 2013, 1308.2830.

[29]  F. Bandi,et al.  On the functional estimation of jump-diffusion models , 2003 .

[30]  Stefan Tappe,et al.  Bilateral gamma distributions and processes in financial mathematics , 2008, 1907.09857.

[31]  R. Berk,et al.  Limiting Behavior of Posterior Distributions when the Model is Incorrect , 1966 .

[32]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[33]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[34]  Said Hamadène,et al.  Viscosity solutions of second order integral–partial differential equations without monotonicity condition: A new result , 2016 .

[35]  Quasi-likelihood analysis for the stochastic differential equation with jumps , 2011 .

[36]  R. Cowan An introduction to the theory of point processes , 1978 .

[37]  A. Kulik Exponential ergodicity of the solutions to SDE’s with a jump noise , 2007 .

[38]  Hiroki Masuda,et al.  Parametric estimation of L\'evy processes , 2014, 1409.0292.

[39]  José E. Figueroa-López Nonparametric Estimation for Lévy Models Based on Discrete-Sampling , 2009 .

[40]  H. Long,et al.  Least squares estimators for stochastic differential equations driven by small Lévy noises , 2017 .

[41]  Stefano M. Iacus,et al.  Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package , 2011, Computational Statistics.

[42]  Estimation for Diffusion Processes under Misspecified Models. , 1984 .

[43]  Yuma Uehara,et al.  Two-step estimation of ergodic Lévy driven SDE , 2015, 1505.01922.

[44]  Estimation for misspecified ergodic diffusion processes from discrete observations , 2011 .

[45]  R. Nickl,et al.  High-frequency Donsker theorems for Lévy measures , 2013, 1310.2523.

[46]  G. Barles,et al.  Backward stochastic differential equations and integral-partial differential equations , 1997 .

[47]  Daryl J. Daley,et al.  General theory and structure , 2008 .

[48]  A. Veretennikov,et al.  Diffusion approximation of systems with weakly ergodic Markov perturbations. II , 2014 .

[49]  Hiroki Masuda,et al.  Non-Gaussian quasi-likelihood estimation of SDE driven by locally stable Lévy process , 2016, Stochastic Processes and their Applications.

[50]  Mathieu Kessler Estimation of an Ergodic Diffusion from Discrete Observations , 1997 .

[51]  Ole E. Barndorff-Nielsen,et al.  Processes of normal inverse Gaussian type , 1997, Finance Stochastics.

[52]  E. Pardoux,et al.  On the Poisson Equation and Diffusion Approximation. I Dedicated to N. v. Krylov on His Sixtieth Birthday , 2001 .