Forced vertical vibration of a rigid circular disc on a semi-infinite elastic solid

Introduction . The effect of a vibrating point force on the surface of a semi-infinite elastic solid was investigated in a classic paper by Lamb ((8)). When the point force is replaced by a vibrating rigid disc the problem is more complicated, because the displacement is specified under the disc and the remainder of the surface is stress-free. This gives rise to a mixed boundary-value problem.

[1]  P. Grootenhuis,et al.  Vibration of rigid bodies on semi-infinite elastic media , 1965, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[2]  G. N. Bycroft Forced vibrations of a rigid circular plate on a semi-infinite elastic space and on an elastic stratum , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  Erich Reissner,et al.  Stationäre, axialsymmetrische, durch eine schüttelnde Masse erregte Schwingungen eines homogenen elastischen Halbraumes , 1936 .

[4]  Kenneth Wright,et al.  Numerical solution of Fredholm integral equations of first kind , 1964, Comput. J..

[5]  B. Noble The solution of Bessel function dual integral equations by a multiplying-factor method , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  F. S. Lamb,et al.  On the Propagation of Tremors over the Surface of an Elastic Solid , 1904 .

[7]  H. Pursey,et al.  The field and radiation impedance of mechanical radiators on the free surface of a semi-infinite isotropic solid , 1954, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[8]  Erich Rei ner Freie und erzwungene Torsionsschwingungen des elastischen Halbraumes , 1937 .

[9]  I. N. Sneddon,et al.  The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch , 1945, Mathematical Proceedings of the Cambridge Philosophical Society.

[10]  L. Fox,et al.  The numerical solution of non-singular linear integral equations , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[11]  A. Erdélyi,et al.  Fractional Integration and Dual Integral Equations , 1962, Canadian Journal of Mathematics.