Using explosions to power a soft robot.

grasping and walking. Despite their advantages(simplicity of fabrication, actuation, and control; low cost;light weight), pneu-nets have the disadvantage that actuationusing them is slow, in part because the viscosity of air limitsthe rate at which the gas can be delivered through tubes to filland expand the microchannels. Herein, we demonstrate therapid actuation of pneu-nets using a chemical reaction (thecombustion of methane) to generate explosive bursts ofpressure.Althoughthecombustionofhydrocarbonsisubiquitousinthe actuation of hard systems (e.g., in the metal cylinder ofa diesel or spark-ignited engine

[1]  M. Muir Physical Chemistry , 1888, Nature.

[2]  Farrington Daniels,et al.  Physical Chemistry, 2nd Ed. , 1961 .

[3]  G. Andrews,et al.  The burning velocity of methane-air mixtures , 1972 .

[4]  K. Kuo Principles of combustion , 1986 .

[5]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[6]  S. Girois,et al.  Polym. Degrad. Stab. , 1996 .

[7]  P. Gaskell,et al.  Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flames: A Computational Study , 1996 .

[8]  Fu-Yu Hshieh,et al.  Shielding effects of silica-ash layer on the combustion of silicones and their possible applications on the fire retardancy of organic polymers , 1998 .

[9]  P. Weiss Hop… hop… hopbots!: Designers of small, mobile robots take cues from grasshoppers and frogs , 2001 .

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  Paolo Fiorini,et al.  Minimalist Jumping Robots for Celestial Exploration , 2003, Int. J. Robotics Res..

[12]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[13]  Jumping robots: a biomimetic solution to locomotion across rough terrain. , 2006, Bioinspiration & biomimetics.

[14]  E de Margerie,et al.  Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV , 2007, Bioinspiration & biomimetics.

[15]  G. Whitesides,et al.  Muscular Thin Films for Building Actuators and Powering Devices , 2007, Science.

[16]  S. Bauer,et al.  Energy minimization for self-organized structure formation and actuation , 2007 .

[17]  Martin Buehler,et al.  Control and Stability Analysis of Limit Cycles in a Hopping Robot , 2007, IEEE Transactions on Robotics.

[18]  Ioannis M. Rekleitis,et al.  The Avatar Project , 2008, IEEE Robotics & Automation Magazine.

[19]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[20]  Claire Longuet,et al.  Flame retardancy of silicone-based materials , 2009 .

[21]  Thomas J McCarthy,et al.  Rediscovering silicones: molecularly smooth, low surface energy, unfilled, UV/vis-transparent, extremely cross-linked, thermally stable, hard, elastic PDMS. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[22]  Huai-Ti Lin,et al.  GoQBot: a caterpillar-inspired soft-bodied rolling robot , 2011, Bioinspiration & biomimetics.

[23]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[24]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[25]  N. Peters,et al.  Understanding ignition processes in spray-guided gasoline engines using high-speed imaging and the extended spark-ignition model SparkCIMM. Part A: Spark channel processes and the turbulent flame front propagation , 2011 .

[26]  D. Drysdale An Introduction to Fire Dynamics , 2011 .

[27]  Heinrich M. Jaeger,et al.  A Positive Pressure Universal Gripper Based on the Jamming of Granular Material , 2012, IEEE Transactions on Robotics.

[28]  Megan L. McCain,et al.  A tissue-engineered jellyfish with biomimetic propulsion , 2012, Nature Biotechnology.