The Roles of PINK1, Parkin, and Mitochondrial Fidelity in Parkinson’s Disease

[1]  S. Gygi,et al.  Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. , 2014, Molecular cell.

[2]  B. Coulombe,et al.  USP8 regulates mitophagy by removing K6‐linked ubiquitin conjugates from parkin , 2014, The EMBO journal.

[3]  V. Baekelandt,et al.  Alpha-synuclein-induced neurodegeneration is exacerbated in PINK1 knockout mice , 2014, Neurobiology of Aging.

[4]  Kuldip D. Dave,et al.  Phenotypic characterization of recessive gene knockout rat models of Parkinson's disease , 2014, Neurobiology of Disease.

[5]  S. Campello,et al.  AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1 , 2014, Cell Death and Differentiation.

[6]  A. Brice,et al.  Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance. , 2014, Biochimica et biophysica acta.

[7]  T. Schwarz,et al.  Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin , 2014, The Journal of cell biology.

[8]  Xuedong Liu,et al.  PINK1 Triggers Autocatalytic Activation of Parkin to Specify Cell Fate Decisions , 2014, Current Biology.

[9]  Fabienne C. Fiesel,et al.  A specific subset of E2 ubiquitin-conjugating enzymes regulate Parkin activation and mitophagy differently , 2014, Journal of Cell Science.

[10]  S. Cullen,et al.  Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. , 2014, Molecular cell.

[11]  Sven Geisler,et al.  The ubiquitin-conjugating enzymes UBE2N, UBE2L3 and UBE2D2/3 are essential for Parkin-dependent mitophagy , 2014, Journal of Cell Science.

[12]  Jina Yun,et al.  MUL1 acts in parallel to the PINK1/parkin pathway in regulating mitofusin and compensates for loss of PINK1/parkin , 2014, eLife.

[13]  D. Kirkpatrick,et al.  The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy , 2014, Nature.

[14]  T. Dawson,et al.  Parkin and PINK1: much more than mitophagy , 2014, Trends in Neurosciences.

[15]  K. Winklhofer Parkin and mitochondrial quality control: toward assembling the puzzle. , 2014, Trends in cell biology.

[16]  Nobutaka Hattori,et al.  PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in Drosophila , 2014, PLoS genetics.

[17]  A. Whitworth,et al.  Genome-wide RNAi screen identifies the Parkinson disease GWAS risk locus SREBF1 as a regulator of mitophagy , 2014, Proceedings of the National Academy of Sciences.

[18]  P. Verstreken,et al.  The deubiquitinase USP15 antagonizes Parkin-mediated mitochondrial ubiquitination and mitophagy , 2014, Human molecular genetics.

[19]  Ruth E. Thomas,et al.  PINK1-Parkin Pathway Activity Is Regulated by Degradation of PINK1 in the Mitochondrial Matrix , 2014, PLoS genetics.

[20]  T. Hirokawa,et al.  Ubiquitin is phosphorylated by PINK1 to activate parkin , 2014, Nature.

[21]  Soojay Banerjee,et al.  PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity , 2014, The Journal of cell biology.

[22]  K. Hofmann,et al.  Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65 , 2014, The Biochemical journal.

[23]  Miratul M. K. Muqit,et al.  Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity , 2014, Open Biology.

[24]  A. M. van der Bliek,et al.  Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy , 2014, eLife.

[25]  H. McBride,et al.  Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control , 2014, The EMBO journal.

[26]  F. Schnorrer,et al.  Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants , 2014, The EMBO journal.

[27]  N. Hattori,et al.  PARK2/Parkin-mediated mitochondrial clearance contributes to proteasome activation during slow-twitch muscle atrophy via NFE2L1 nuclear translocation , 2014, Autophagy.

[28]  G. Dorn,et al.  Mitochondrial Contagion Induced by Parkin Deficiency in Drosophila Hearts and Its Containment by Suppressing Mitofusin , 2014, Circulation research.

[29]  N. Hattori,et al.  Mutations in Fis1 disrupt orderly disposal of defective mitochondria , 2014, Molecular biology of the cell.

[30]  Scott E. Martin,et al.  High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy , 2013, Nature.

[31]  H. Abeliovich,et al.  Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy , 2013, Nature Communications.

[32]  Keiji Tanaka,et al.  A Dimeric PINK1-containing Complex on Depolarized Mitochondria Stimulates Parkin Recruitment* , 2013, The Journal of Biological Chemistry.

[33]  G. Yap,et al.  Faculty Opinions recommendation of The ubiquitin ligase parkin mediates resistance to intracellular pathogens. , 2013 .

[34]  W. Yang,et al.  Bit-by-bit autophagic removal of parkin-labelled mitochondria , 2013, Nature Communications.

[35]  R. Youle,et al.  The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria , 2013, Autophagy.

[36]  A. Suomalainen,et al.  Tissue- and cell-type–specific manifestations of heteroplasmic mtDNA 3243A>G mutation in human induced pluripotent stem cell-derived disease model , 2013, Proceedings of the National Academy of Sciences.

[37]  A. Burlingame,et al.  A Neo-Substrate that Amplifies Catalytic Activity of Parkinson’s-Disease-Related Kinase PINK1 , 2013, Cell.

[38]  H. McBride,et al.  Genome-wide RNAi screen identifies ATPase inhibitory factor 1 (ATPIF1) as essential for PARK2 recruitment and mitophagy , 2013, Autophagy.

[39]  H. Abeliovich,et al.  Role of Membrane Association and Atg14-Dependent Phosphorylation in Beclin-1-Mediated Autophagy , 2013, Molecular and Cellular Biology.

[40]  A. Whitworth,et al.  TRAP1 rescues PINK1 loss-of-function phenotypes. , 2013, Human molecular genetics.

[41]  D. Klionsky,et al.  The scaffold protein Atg11 recruits fission machinery to drive selective mitochondria degradation by autophagy. , 2013, Developmental cell.

[42]  N. Lax,et al.  The Impact of Pathogenic Mitochondrial DNA Mutations on Substantia Nigra Neurons , 2013, The Journal of Neuroscience.

[43]  Kalle Gehring,et al.  Structure of Parkin Reveals Mechanisms for Ubiquitin Ligase Activation , 2013, Science.

[44]  P. Mercier,et al.  A molecular explanation for the recessive nature of parkin-linked Parkinson’s disease , 2013, Nature Communications.

[45]  T. Shaler,et al.  Structure and function of Parkin E3 ubiquitin ligase reveals aspects of RING and HECT ligases , 2013, Nature Communications.

[46]  D. Surmeier,et al.  Calcium Entry and α-Synuclein Inclusions Elevate Dendritic Mitochondrial Oxidant Stress in Dopaminergic Neurons , 2013, The Journal of Neuroscience.

[47]  Norihiro Suzuki,et al.  Parkin-catalyzed Ubiquitin-Ester Transfer Is Triggered by PINK1-dependent Phosphorylation* , 2013, The Journal of Biological Chemistry.

[48]  David Komander,et al.  Structure of the human Parkin ligase domain in an autoinhibited state , 2013, The EMBO journal.

[49]  Tony Hunter,et al.  Parkin mitochondrial translocation is achieved through a novel catalytic activity coupled mechanism , 2013, Cell Research.

[50]  D. Walker,et al.  Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan , 2013, Proceedings of the National Academy of Sciences.

[51]  G. Dorn,et al.  PINK1-Phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria , 2013, Science.

[52]  R. Youle,et al.  PINK1 is degraded through the N-end rule pathway , 2013, Autophagy.

[53]  L. Pallanck,et al.  VCP Is Essential for Mitochondrial Quality Control by PINK1/Parkin and this Function Is Impaired by VCP Mutations , 2013, Neuron.

[54]  S. Snyder,et al.  Sulfhydration mediates neuroprotective actions of parkin , 2013, Nature Communications.

[55]  Gennifer E. Merrihew,et al.  The PINK1–Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo , 2013, Proceedings of the National Academy of Sciences.

[56]  Steven P. Gygi,et al.  Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization , 2013, Nature.

[57]  W. Wurst,et al.  The E3 ligase parkin maintains mitochondrial integrity by increasing linear ubiquitination of NEMO. , 2013, Molecular cell.

[58]  Michael Lazarou,et al.  PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding , 2013, The Journal of cell biology.

[59]  L. Martins,et al.  Drosophila Trap1 protects against mitochondrial dysfunction in a PINK1/parkin model of Parkinson's disease , 2013, Cell Death and Disease.

[60]  Nobutaka Hattori,et al.  PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy , 2012, Scientific Reports.

[61]  D. Krainc,et al.  Phosphatase and Tensin Homolog (PTEN)-induced Putative Kinase 1 (PINK1)-dependent Ubiquitination of Endogenous Parkin Attenuates Mitophagy , 2012, The Journal of Biological Chemistry.

[62]  M. Frank,et al.  Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner. , 2012, Biochimica et biophysica acta.

[63]  S. Cullheim,et al.  Mitofusin 2 is necessary for striatal axonal projections of midbrain dopamine neurons. , 2012, Human molecular genetics.

[64]  Xiaoxue Zhang,et al.  Parkin Protein Deficiency Exacerbates Cardiac Injury and Reduces Survival following Myocardial Infarction*♦ , 2012, The Journal of Biological Chemistry.

[65]  R. Youle,et al.  Mitochondrial quality control mediated by PINK1 and Parkin: links to parkinsonism. , 2012, Cold Spring Harbor perspectives in biology.

[66]  P. Bastiaens,et al.  Fluorescence-based sensors to monitor localization and functions of linear and K63-linked ubiquitin chains in cells. , 2012, Molecular cell.

[67]  A. M. van der Bliek,et al.  Mitochondrial Fission, Fusion, and Stress , 2012, Science.

[68]  P. Kim,et al.  ROS-induced mitochondrial depolarization initiates PARK2/PARKIN-dependent mitochondrial degradation by autophagy , 2012, Autophagy.

[69]  T. Sixma,et al.  The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension , 2012, The EMBO journal.

[70]  A. Singleton,et al.  The genetics and neuropathology of Parkinson’s disease , 2012, Acta Neuropathologica.

[71]  Angela C. Poole,et al.  Analysis of neural subtypes reveals selective mitochondrial dysfunction in dopaminergic neurons from parkin mutants , 2012, Proceedings of the National Academy of Sciences.

[72]  Janaka N. Edirisinghe,et al.  Vitamin K2 Is a Mitochondrial Electron Carrier That Rescues Pink1 Deficiency , 2012, Science.

[73]  E. Giaime,et al.  Regulation of mitochondrial permeability transition pore by PINK1 , 2012, Molecular Neurodegeneration.

[74]  P. Reddy,et al.  Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage , 2012, The Journal of cell biology.

[75]  Miratul M. K. Muqit,et al.  PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65 , 2012, Open Biology.

[76]  David S. Park,et al.  Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment , 2012, EMBO reports.

[77]  M. LaVoie,et al.  The ubiquitin E3 ligase parkin regulates the proapoptotic function of Bax , 2012, Proceedings of the National Academy of Sciences.

[78]  N. Mizushima,et al.  Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy , 2012, Journal of Cell Science.

[79]  W. Saxton,et al.  Parkinson's Disease–Associated Kinase PINK1 Regulates Miro Protein Level and Axonal Transport of Mitochondria , 2012, PLoS genetics.

[80]  E. Schon,et al.  Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition. , 2012, Human molecular genetics.

[81]  R. Youle,et al.  Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. , 2012, Developmental cell.

[82]  J. Boeke,et al.  Polyubiquitin-sensor proteins reveal localization and linkage-type dependence of cellular ubiquitin signaling , 2012, Nature Methods.

[83]  D. Dinsdale,et al.  Genetic analysis of mitochondrial protein misfolding in Drosophila melanogaster , 2012, Cell Death and Differentiation.

[84]  P. Verstreken,et al.  The Yeast Complex I Equivalent NADH Dehydrogenase Rescues pink1 Mutants , 2012, PLoS genetics.

[85]  Xinnan Wang,et al.  PINK1 and Parkin Target Miro for Phosphorylation and Degradation to Arrest Mitochondrial Motility , 2011, Cell.

[86]  I. Nonaka,et al.  Muscle choline kinase beta defect causes mitochondrial dysfunction and increased mitophagy. , 2011, Human molecular genetics.

[87]  W. Yang,et al.  Spatiotemporally controlled initiation of Parkin-mediated mitophagy within single cells , 2011, Autophagy.

[88]  Christian V. Forst,et al.  Image-Based Genome-Wide siRNA Screen Identifies Selective Autophagy Factors , 2011, Nature.

[89]  Atsushi Miyawaki,et al.  A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. , 2011, Chemistry & biology.

[90]  H. Walden,et al.  Autoregulation of Parkin activity through its ubiquitin‐like domain , 2011, The EMBO journal.

[91]  F. Sterky,et al.  Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo , 2011, Proceedings of the National Academy of Sciences.

[92]  Kindiya D. Geghman,et al.  Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission , 2011, Proceedings of the National Academy of Sciences.

[93]  W. Mandemakers,et al.  Parkin Interacts with Ambra1 to Induce Mitophagy , 2011, The Journal of Neuroscience.

[94]  Chengqun Huang,et al.  Preconditioning Involves Selective Mitophagy Mediated by Parkin and p62/SQSTM1 , 2011, PloS one.

[95]  D. Selkoe,et al.  The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking , 2011, Journal of neurochemistry.

[96]  T. Mak,et al.  PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function , 2011, Proceedings of the National Academy of Sciences.

[97]  S. Lipton,et al.  Oxidation of the cysteine-rich regions of parkin perturbs its E3 ligase activity and contributes to protein aggregation , 2011, Molecular Neurodegeneration.

[98]  O. Shirihai,et al.  The interplay between mitochondrial dynamics and mitophagy. , 2011, Antioxidants & redox signaling.

[99]  Rachel E. Klevit,et al.  UbcH7 reactivity profile reveals Parkin and HHARI to be RING/HECT hybrids , 2011, Nature.

[100]  D. Krainc,et al.  Mitochondrial Parkin Recruitment Is Impaired in Neurons Derived from Mutant PINK1 Induced Pluripotent Stem Cells , 2011, The Journal of Neuroscience.

[101]  Y. Eishi,et al.  Autophagy-deficient mice develop multiple liver tumors. , 2011, Genes & development.

[102]  R. Rodenburg,et al.  Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance , 2011, Journal of Cell Science.

[103]  N. Mizushima,et al.  Parkin Mediates Proteasome-dependent Protein Degradation and Rupture of the Outer Mitochondrial Membrane*♦ , 2011, The Journal of Biological Chemistry.

[104]  N. Brüggemann,et al.  Mutations in PINK1 and Parkin Impair Ubiquitination of Mitofusins in Human Fibroblasts , 2011, PloS one.

[105]  T. Dawson,et al.  PARIS (ZNF746) Repression of PGC-1α Contributes to Neurodegeneration in Parkinson's Disease , 2011, Cell.

[106]  Sonja Hess,et al.  Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy , 2011, Human molecular genetics.

[107]  C. Tanner,et al.  Rotenone, Paraquat, and Parkinson’s Disease , 2011, Environmental health perspectives.

[108]  V. Choubey,et al.  Mutant A53T α-Synuclein Induces Neuronal Death by Increasing Mitochondrial Autophagy* , 2011, The Journal of Biological Chemistry.

[109]  R. Akundi,et al.  Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice , 2011, PloS one.

[110]  N. Mizushima,et al.  p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding , 2011, The Journal of cell biology.

[111]  R. Youle,et al.  Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin , 2010, The Journal of cell biology.

[112]  A. Schapira,et al.  Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. , 2010, Human molecular genetics.

[113]  A. Whitworth,et al.  PINK1 cleavage at position A103 by the mitochondrial protease PARL , 2010, Human molecular genetics.

[114]  R. Youle,et al.  Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL , 2010, The Journal of cell biology.

[115]  R. Youle,et al.  p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both , 2010, Autophagy.

[116]  S. Weber,et al.  The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations , 2010, Autophagy.

[117]  Steve D. M. Brown,et al.  α-Synuclein impairs macroautophagy: implications for Parkinson’s disease , 2010, The Journal of cell biology.

[118]  Nobutaka Hattori,et al.  p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria , 2010, Genes to cells : devoted to molecular & cellular mechanisms.

[119]  R. Youle,et al.  Parkin overexpression selects against a deleterious mtDNA mutation in heteroplasmic cybrid cells , 2010, Proceedings of the National Academy of Sciences.

[120]  K. Lim,et al.  Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy , 2010, The Journal of cell biology.

[121]  N. Hattori,et al.  PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy , 2010, The Journal of cell biology.

[122]  Angela C. Poole,et al.  The Mitochondrial Fusion-Promoting Factor Mitofusin Is a Substrate of the PINK1/Parkin Pathway , 2010, PloS one.

[123]  P. Pástor,et al.  PINK1-linked parkinsonism is associated with Lewy body pathology. , 2010, Brain : a journal of neurology.

[124]  A. Whitworth,et al.  Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates Mitofusin , 2010, Proceedings of the National Academy of Sciences.

[125]  Fabienne C. Fiesel,et al.  PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1 , 2010, Nature Cell Biology.

[126]  M. Russo,et al.  The Parkinson-associated protein PINK1 interacts with Beclin1 and promotes autophagy , 2010, Cell Death and Differentiation.

[127]  Atsushi Tanaka,et al.  PINK1 Is Selectively Stabilized on Impaired Mitochondria to Activate Parkin , 2010, PLoS biology.

[128]  Ted M. Dawson,et al.  PINK1-dependent recruitment of Parkin to mitochondria in mitophagy , 2009, Proceedings of the National Academy of Sciences.

[129]  Jie Shen,et al.  Absence of nigral degeneration in aged parkin/DJ‐1/PINK1 triple knockout mice , 2009, Journal of neurochemistry.

[130]  I. Marín RBR Ubiquitin Ligases: Diversification and Streamlining in Animal Lineages , 2009, Journal of Molecular Evolution.

[131]  V. Hristova,et al.  Identification of a Novel Zn2+-binding Domain in the Autosomal Recessive Juvenile Parkinson-related E3 Ligase Parkin* , 2009, Journal of Biological Chemistry.

[132]  Ivan Dikic,et al.  A role for ubiquitin in selective autophagy. , 2009, Molecular cell.

[133]  P. Verstreken,et al.  Parkinson's disease mutations in PINK1 result in decreased Complex I activity and deficient synaptic function , 2009, EMBO molecular medicine.

[134]  Michael R. Duchen,et al.  PINK1-Associated Parkinson's Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death , 2009, Molecular cell.

[135]  Jongkyeong Chung,et al.  The PINK1-Parkin pathway is involved in the regulation of mitochondrial remodeling process. , 2009, Biochemical and biophysical research communications.

[136]  P. Kapahi,et al.  Loss-of-Function Analysis Suggests That Omi/HtrA2 Is Not an Essential Component of the pink1/parkin Pathway In Vivo , 2008, The Journal of Neuroscience.

[137]  R. Youle,et al.  Role of the Ubiquitin Conjugation System in the Maintenance of Mitochondrial Homeostasis , 2008, Annals of the New York Academy of Sciences.

[138]  R. Youle,et al.  Parkin is recruited selectively to impaired mitochondria and promotes their autophagy , 2008, The Journal of cell biology.

[139]  D. Goldfarb,et al.  Piecemeal microautophagy of the nucleus requires the core macroautophagy genes. , 2008, Molecular biology of the cell.

[140]  Hansong Deng,et al.  The Parkinson's disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[141]  Jie Shen,et al.  Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress , 2008, Proceedings of the National Academy of Sciences.

[142]  William Lin,et al.  Characterization of PINK1 processing, stability, and subcellular localization , 2008, Journal of neurochemistry.

[143]  M. Beal,et al.  Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machinery , 2008, Proceedings of the National Academy of Sciences.

[144]  N. Avadhani,et al.  Mitochondrial Import and Accumulation of α-Synuclein Impair Complex I in Human Dopaminergic Neuronal Cultures and Parkinson Disease Brain* , 2008, Journal of Biological Chemistry.

[145]  Angela C. Poole,et al.  The PINK1/Parkin pathway regulates mitochondrial morphology , 2008, Proceedings of the National Academy of Sciences.

[146]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[147]  V. Bader,et al.  Mono- and double-mutant mouse models of Parkinson's disease display severe mitochondrial damage. , 2007, Human molecular genetics.

[148]  J. Downward,et al.  The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1 , 2007, Nature Cell Biology.

[149]  Douglas R. Porter,et al.  Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice , 2007, Proceedings of the National Academy of Sciences.

[150]  J. Olzmann,et al.  PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial Chaperone TRAP1 , 2007, PLoS biology.

[151]  M. Beal,et al.  Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[152]  Sunhong Kim,et al.  Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin , 2006, Nature.

[153]  Changan Jiang,et al.  Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin , 2006, Nature.

[154]  C. Geula,et al.  Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons , 2006, Nature Genetics.

[155]  Robert W. Taylor,et al.  High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease , 2006, Nature Genetics.

[156]  Roya Saffary,et al.  Inclusion Body Formation and Neurodegeneration Are Parkin Independent in a Mouse Model of α-Synucleinopathy , 2006, The Journal of Neuroscience.

[157]  A. Brice,et al.  Proteomic analysis of parkin knockout mice: alterations in energy metabolism, protein handling and synaptic function , 2005, Journal of neurochemistry.

[158]  R. Hilker,et al.  Lewy body Parkinson's disease in a large pedigree with 77 Parkin mutation carriers , 2005, Annals of neurology.

[159]  Jin Man Kim,et al.  Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[160]  D. Chan,et al.  Disruption of Fusion Results in Mitochondrial Heterogeneity and Dysfunction* , 2005, Journal of Biological Chemistry.

[161]  J. C. Greene,et al.  Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson's disease , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[162]  J. C. Greene,et al.  Immune responses , 2004 .

[163]  R. Palmiter,et al.  Parkin-deficient mice are not a robust model of parkinsonism. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[164]  L. Peltonen,et al.  Parkinsonism, premature menopause, and mitochondrial DNA polymerase γ mutations: clinical and molecular genetic study , 2004, The Lancet.

[165]  K. Lim,et al.  Loss of locus coeruleus neurons and reduced startle in parkin null mice. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[166]  R. Nussbaum,et al.  Hereditary Early-Onset Parkinson's Disease Caused by Mutations in PINK1 , 2004, Science.

[167]  G. Mardon,et al.  Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress , 2004, Development.

[168]  Joachim Klose,et al.  Mitochondrial Dysfunction and Oxidative Damage in parkin-deficient Mice* , 2004, Journal of Biological Chemistry.

[169]  T. Hudson,et al.  Susceptibility to leprosy is associated with PARK2 and PACRG , 2004, Nature.

[170]  R. Palmiter,et al.  Novel Monoclonal Antibodies Demonstrate Biochemical Variation of Brain Parkin with Age* , 2003, Journal of Biological Chemistry.

[171]  Bryan L Roth,et al.  Parkin-deficient Mice Exhibit Nigrostriatal Deficits but Not Loss of Dopaminergic Neurons* , 2003, Journal of Biological Chemistry.

[172]  Santiago Canals,et al.  Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. , 2003, Human molecular genetics.

[173]  M. Freeman,et al.  Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. , 2003, Molecular cell.

[174]  J. C. Greene,et al.  Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[175]  M. Ryan,et al.  A mitochondrial specific stress response in mammalian cells , 2002, The EMBO journal.

[176]  A. Bentivoglio,et al.  PARK6 is a common cause of familial parkinsonism , 2002, Neurological Sciences.

[177]  A. Bentivoglio,et al.  Park6‐linked parkinsonism occurs in several european families , 2002, Annals of neurology.

[178]  A. Bentivoglio,et al.  Phenotypic characterisation of autosomal recessive PARK6‐linked parkinsonism in three unrelated Italian families , 2001, Movement disorders : official journal of the Movement Disorder Society.

[179]  Yusuke Nakamura,et al.  Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway , 2001, Oncogene.

[180]  A. Bentivoglio,et al.  Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. , 2001, American journal of human genetics.

[181]  Todd B. Sherer,et al.  Chronic systemic pesticide exposure reproduces features of Parkinson's disease , 2000, Nature Neuroscience.

[182]  Shinsei Minoshima,et al.  Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase , 2000, Nature Genetics.

[183]  L. Scott,et al.  Parkinson's disease and dementia with Lewy bodies. , 1999, Elderly care.

[184]  N. Shimizu,et al.  Molecular genetic analysis of a novel Parkin gene in Japanese families with autosomal recessive juvenile parkinsonism: Evidence for variable homozygous deletions in the Parkin gene in affected individuals , 1998, Annals of neurology.

[185]  Y. Agid,et al.  Homozygous deletions in parkin gene in European and North African families with autosomal recessive juvenile parkinsonism , 1998, The Lancet.

[186]  A. Lang,et al.  Parkinson's disease. Second of two parts. , 1998, The New England journal of medicine.

[187]  A. Lang,et al.  Parkinson's disease. First of two parts. , 1998, The New England journal of medicine.

[188]  M. Polymeropoulos,et al.  Deletions in the Parkin gene and genetic heterogeneity in a Greek family with early onset Parkinson’s disease , 1998, Human Genetics.

[189]  A. Brookes,et al.  Point Mutations (Thr240Arg and Ala311Stop) in theParkinGene , 1998 .

[190]  R. Crowther,et al.  α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies , 1998 .

[191]  S. Minoshima,et al.  Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism , 1998, Nature.

[192]  Yi-Te Hsu,et al.  Movement of Bax from the Cytosol to Mitochondria during Apoptosis , 1997, The Journal of cell biology.

[193]  Wiklund Ra,et al.  First of two parts , 1997 .

[194]  A A Schäffer,et al.  Localization of a gene for an autosomal recessive form of juvenile Parkinsonism to chromosome 6q25.2-27. , 1997, American journal of human genetics.

[195]  A Hofman,et al.  Prevalence of Parkinson's disease in the elderly , 1995, Neurology.

[196]  A. H. V. Schapira,et al.  MITOCHONDRIAL COMPLEX I DEFICIENCY IN PARKINSON'S DISEASE , 1989, The Lancet.

[197]  R. Ramsay,et al.  Energy-dependent uptake of N-methyl-4-phenylpyridinium, the neurotoxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, by mitochondria. , 1986, The Journal of biological chemistry.

[198]  W. Nicklas,et al.  Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. , 1985, Life sciences.

[199]  S. Snyder,et al.  Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[200]  Diana Brahams,et al.  Medicine and the Law , 1983, The Lancet.

[201]  J. Langston,et al.  Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. , 1983, Science.

[202]  F. Sanger,et al.  Sequence and organization of the human mitochondrial genome , 1981, Nature.

[203]  S. Campello,et al.  Corrigendum: AMBRA1 is able to induce mitophagy via LC3 binding, regardless of PARKIN and p62/SQSTM1 (Cell Death and Differentiation (2015) 22, (419-432) doi: 10.1038/cdd.2014.139) , 2015 .

[204]  M. Cookson,et al.  Hexokinase activity is required for recruitment of parkin to depolarized mitochondria. , 2014, Human molecular genetics.

[205]  R. Youle,et al.  Mechanisms of mitophagy , 2010, Nature Reviews Molecular Cell Biology.

[206]  R A Crowther,et al.  alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson's disease and dementia with lewy bodies. , 1998, Proceedings of the National Academy of Sciences of the United States of America.