Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers
暂无分享,去创建一个
[1] Miloslav Feistauer,et al. Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom , 2011 .
[2] Michael Dumbser,et al. Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..
[3] S. Zalesak. Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .
[4] Mikhail Shashkov,et al. Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes , 2013 .
[5] Chi-Wang Shu,et al. Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .
[6] Bruno Després,et al. Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .
[7] Eleuterio F. Toro,et al. Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..
[8] Jérôme Breil,et al. Hybrid remap for multi-material ALE , 2011 .
[9] A. Scott,et al. Solitons and the Inverse Scattering Transform (Mark J. Ablowitz and Harvey Segur) , 1983 .
[10] Michael Fey,et al. The method of transport for solving the Euler-equations , 1995 .
[11] Jérôme Breil,et al. A multi-material ReALE method with MOF interface reconstruction , 2013 .
[12] Pavel Váchal,et al. Synchronized flux corrected remapping for ALE methods , 2011 .
[13] R. Kidder,et al. Laser-driven compression of hollow shells: power requirements and stability limitations , 1976 .
[14] S. K. Trehan,et al. Plasma oscillations (I) , 1960 .
[15] Dinshaw Balsara,et al. Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .
[16] Pierre-Henri Maire,et al. Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..
[17] Michael Dumbser,et al. Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.
[18] Michael Dumbser,et al. A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..
[19] Dinshaw S. Balsara,et al. Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics , 2012, J. Comput. Phys..
[20] Pierre-Henri Maire,et al. A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids , 2011 .
[21] Michael Dumbser,et al. Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..
[22] Rémi Abgrall,et al. Multidimensional HLLC Riemann solver for unstructured meshes - With application to Euler and MHD flows , 2014, J. Comput. Phys..
[23] Dinshaw S. Balsara. Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows , 2010, J. Comput. Phys..
[24] Dimitris Drikakis,et al. WENO schemes for mixed-elementunstructured meshes , 2010 .
[25] P. Roe,et al. On Godunov-type methods near low densities , 1991 .
[26] S. Osher,et al. Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .
[27] Bruno Després,et al. A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..
[28] Pierre-Henri Maire,et al. A unified sub‐cell force‐based discretization for cell‐centered Lagrangian hydrodynamics on polygonal grids , 2011 .
[29] Guang-Shan Jiang,et al. A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .
[30] D. Balsara,et al. A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .
[31] Chi-Wang Shu,et al. High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations , 2009, J. Comput. Phys..
[32] Siam J. Sci. FINITE VOLUME EVOLUTION GALERKIN METHODS FOR HYPERBOLIC SYSTEMS , 2004 .
[33] Dinshaw Balsara,et al. Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.
[34] Chi-Wang Shu. Discontinuous Galerkin Methods , 2010 .
[35] G. Karniadakis,et al. Spectral/hp Element Methods for CFD , 1999 .
[36] Vladimir A. Titarev,et al. WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..
[37] E. Toro,et al. Restoration of the contact surface in the HLL-Riemann solver , 1994 .
[38] Michael Dumbser,et al. Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.
[39] P. Raviart,et al. An asymptotic expansion for the solution of the generalized Riemann problem Part I: General theory , 1988 .
[40] Stéphane Clain,et al. A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..
[41] Eleuterio F. Toro,et al. ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .
[42] P. Raviart,et al. An asymptotic expansion for the solution of the generalized Riemann problem. Part 2 : application to the equations of gas dynamics , 1989 .
[43] Jérôme Breil,et al. Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..
[44] R. Abgrall. APPROXIMATION DU PROBLEME DE RIEMANN VRAIMENT MULTDIDIMENSIONNEL DES EQUATIONS D'EULER PAR UNE METHODE DE TYPE ROE (II) : SOLUTION DU PROBLEME DE RIEM ANN APPROCHE , 1994 .
[45] Eleuterio F. Toro,et al. ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..
[46] Michael Dumbser,et al. High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics , 2013, 1310.7256.
[47] Dinshaw S. Balsara,et al. Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .
[48] Jérôme Breil,et al. A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction , 2010, J. Comput. Phys..
[49] Armin Iske,et al. Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..
[50] E. Toro. Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .
[51] Gerald Warnecke,et al. Finite volume evolution Galerkin methods for Euler equations of gas dynamics , 2002 .
[52] Michael Dumbser,et al. On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .
[53] P. Knupp. Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .
[54] Pierre-Henri Maire,et al. A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..
[55] J. S. Peery,et al. Multi-Material ALE methods in unstructured grids , 2000 .
[56] Pavel B. Bochev,et al. Fast optimization-based conservative remap of scalar fields through aggregate mass transfer , 2013, J. Comput. Phys..
[57] Bruno Després,et al. Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers , 2003 .
[58] Juan Cheng,et al. Improvement on Spherical Symmetry in Two-Dimensional Cylindrical Coordinates for a Class of Control Volume Lagrangian Schemes , 2012 .
[59] O. Friedrich,et al. Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .
[60] Rémi Abgrall. APPROXIMATION DU PROBLEME DE RIEMANN VRAIMENT MULTIDIMENSIONNEL DES EQUATIONS D'EULER PAR UNE METHODE DE TYPE ROE (I) : LA LINEARISATION , 1994 .
[61] W. F. Noh. Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .
[62] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[63] Michael Dumbser,et al. A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..
[64] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[65] Chi-Wang Shu,et al. A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..
[66] Michael Fey,et al. Multidimensional Upwinding. Part II. Decomposition of the Euler Equations into Advection Equations , 1998 .
[67] Timothy J. Barth,et al. The design and application of upwind schemes on unstructured meshes , 1989 .
[68] J. Falcovitz,et al. A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .
[69] P. Colella. A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .
[70] Miloslav Feistauer,et al. The ALE Discontinuous Galerkin Method for the Simulatio of Air Flow Through Pulsating Human Vocal Folds , 2010 .
[71] C. Ollivier-Gooch,et al. A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .
[72] Michael Dumbser,et al. ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..
[73] B. V. Leer,et al. Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .
[74] Mikhail Shashkov,et al. A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation , 2013 .
[75] Mikhail Shashkov,et al. A finite volume cell‐centered Lagrangian hydrodynamics approach for solids in general unstructured grids , 2013 .
[76] Dinshaw S. Balsara,et al. Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .
[77] John K. Dukowicz,et al. Vorticity errors in multidimensional Lagrangian codes , 1992 .
[78] C. W. Hirt,et al. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .
[79] Philip L. Roe,et al. A multidimensional flux function with applications to the Euler and Navier-Stokes equations , 1993 .
[80] Moshe Dubiner. Spectral methods on triangles and other domains , 1991 .
[81] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[82] John K. Dukowicz,et al. A general, non-iterative Riemann solver for Godunov's method☆ , 1985 .
[83] P. Frederickson,et al. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .
[84] Guglielmo Scovazzi,et al. Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach , 2012, J. Comput. Phys..
[85] Claus-Dieter Munz,et al. On Godunov-type schemes for Lagrangian gas dynamics , 1994 .
[86] Yong-Tao Zhang,et al. Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes , 2008 .
[87] M. Dumbser,et al. High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows , 2013, 1304.4816.
[88] Michael Dumbser,et al. On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws , 2012, 1207.6407.
[89] Miloslav Feistauer,et al. Numerical simulation of interaction between turbulent flow and a vibrating airfoil , 2009 .
[90] Michael Fey,et al. Multidimensional Upwinding. Part I. The Method of Transport for Solving the Euler Equations , 1998 .
[91] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws , 1990 .
[92] I. Bohachevsky,et al. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .
[93] Bernd Einfeld. On Godunov-type methods for gas dynamics , 1988 .
[94] William J. Rider,et al. Multi-material pressure relaxation methods for Lagrangian hydrodynamics , 2013 .
[95] Eleuterio F. Toro,et al. AOn WAF-Type Schemes for Multidimensional Hyperbolic Conservation Laws , 1997 .
[96] David L. Book,et al. Flux-corrected transport II: Generalizations of the method , 1975 .
[97] R. Smith,et al. AUSM(ALE) , 1999 .
[98] Rémi Abgrall,et al. On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .
[99] Michael Dumbser,et al. Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..
[100] Dinshaw S. Balsara. A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..
[101] Mikhail J. Shashkov,et al. One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods , 2012, J. Comput. Phys..
[102] Jaromír Horácek,et al. Simulation of compressible viscous flow in time-dependent domains , 2013, Appl. Math. Comput..
[103] Raphaël Loubère,et al. ReALE: A Reconnection Arbitrary-Lagrangian―Eulerian method in cylindrical geometry , 2011 .
[104] C. Munz,et al. Hyperbolic divergence cleaning for the MHD equations , 2002 .
[105] Chi-Wang Shu,et al. Efficient Implementation of Weighted ENO Schemes , 1995 .
[106] Guglielmo Scovazzi,et al. A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements , 2011, J. Comput. Phys..
[107] Chi-Wang Shu,et al. A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry , 2010, J. Comput. Phys..
[108] Armin Iske,et al. ADER schemes on adaptive triangular meshes for scalar conservation laws , 2005 .