Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers

Abstract In this paper we use the genuinely multidimensional HLL Riemann solvers recently developed by Balsara et al. in [13] to construct a new class of computationally efficient high order Lagrangian ADER-WENO one-step ALE finite volume schemes on unstructured triangular meshes. A nonlinear WENO reconstruction operator allows the algorithm to achieve high order of accuracy in space, while high order of accuracy in time is obtained by the use of an ADER time-stepping technique based on a local space–time Galerkin predictor. The multidimensional HLL and HLLC Riemann solvers operate at each vertex of the grid, considering the entire Voronoi neighborhood of each node and allow for larger time steps than conventional one-dimensional Riemann solvers. The results produced by the multidimensional Riemann solver are then used twice in our one-step ALE algorithm: first, as a node solver that assigns a unique velocity vector to each vertex, in order to preserve the continuity of the computational mesh; second, as a building block for genuinely multidimensional numerical flux evaluation that allows the scheme to run with larger time steps compared to conventional finite volume schemes that use classical one-dimensional Riemann solvers in normal direction. The space–time flux integral computation is carried out at the boundaries of each triangular space–time control volume using the Simpson quadrature rule in space and Gauss–Legendre quadrature in time. A rezoning step may be necessary in order to overcome element overlapping or crossing-over. Since our one-step ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, the remapping stage is not needed, making our algorithm a so-called direct ALE method. We apply the method presented in this article to two systems of hyperbolic conservation laws, namely the Euler equations of compressible gas dynamics and the equations of ideal classical magneto-hydrodynamics (MHD). Convergence studies up to fourth order of accuracy in space and time have been carried out. Several numerical test problems have been solved to validate the new approach. Furthermore, the new high order Lagrangian schemes based on genuinely multidimensional Riemann solvers have been carefully compared with high order Lagrangian finite volume schemes based on conventional one-dimensional Riemann solvers. It has been clearly shown that due to the less restrictive CFL condition the new schemes based on multidimensional HLL and HLLC Riemann solvers are computationally more efficient than the ones based on a conventional one-dimensional Riemann solver technique.

[1]  Miloslav Feistauer,et al.  Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom , 2011 .

[2]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[3]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .

[4]  Mikhail Shashkov,et al.  Exploration of new limiter schemes for stress tensors in Lagrangian and ALE hydrocodes , 2013 .

[5]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[6]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[7]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[8]  Jérôme Breil,et al.  Hybrid remap for multi-material ALE , 2011 .

[9]  A. Scott,et al.  Solitons and the Inverse Scattering Transform (Mark J. Ablowitz and Harvey Segur) , 1983 .

[10]  Michael Fey,et al.  The method of transport for solving the Euler-equations , 1995 .

[11]  Jérôme Breil,et al.  A multi-material ReALE method with MOF interface reconstruction , 2013 .

[12]  Pavel Váchal,et al.  Synchronized flux corrected remapping for ALE methods , 2011 .

[13]  R. Kidder,et al.  Laser-driven compression of hollow shells: power requirements and stability limitations , 1976 .

[14]  S. K. Trehan,et al.  Plasma oscillations (I) , 1960 .

[15]  Dinshaw Balsara,et al.  Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .

[16]  Pierre-Henri Maire,et al.  Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics , 2009, J. Comput. Phys..

[17]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[18]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[19]  Dinshaw S. Balsara,et al.  Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics , 2012, J. Comput. Phys..

[20]  Pierre-Henri Maire,et al.  A high-order one-step sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids , 2011 .

[21]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[22]  Rémi Abgrall,et al.  Multidimensional HLLC Riemann solver for unstructured meshes - With application to Euler and MHD flows , 2014, J. Comput. Phys..

[23]  Dinshaw S. Balsara Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows , 2010, J. Comput. Phys..

[24]  Dimitris Drikakis,et al.  WENO schemes for mixed-elementunstructured meshes , 2010 .

[25]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[26]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[27]  Bruno Després,et al.  A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension , 2009, J. Comput. Phys..

[28]  Pierre-Henri Maire,et al.  A unified sub‐cell force‐based discretization for cell‐centered Lagrangian hydrodynamics on polygonal grids , 2011 .

[29]  Guang-Shan Jiang,et al.  A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .

[30]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[31]  Chi-Wang Shu,et al.  High order conservative Lagrangian schemes with Lax-Wendroff type time discretization for the compressible Euler equations , 2009, J. Comput. Phys..

[32]  Siam J. Sci FINITE VOLUME EVOLUTION GALERKIN METHODS FOR HYPERBOLIC SYSTEMS , 2004 .

[33]  Dinshaw Balsara,et al.  Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.

[34]  Chi-Wang Shu Discontinuous Galerkin Methods , 2010 .

[35]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[36]  Vladimir A. Titarev,et al.  WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions , 2011, J. Comput. Phys..

[37]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[38]  Michael Dumbser,et al.  Arbitrary-Lagrangian-Eulerian One-Step WENO Finite Volume Schemes on Unstructured Triangular Meshes , 2013, 1302.3076.

[39]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem Part I: General theory , 1988 .

[40]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[41]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[42]  P. Raviart,et al.  An asymptotic expansion for the solution of the generalized Riemann problem. Part 2 : application to the equations of gas dynamics , 1989 .

[43]  Jérôme Breil,et al.  Two-step hybrid conservative remapping for multimaterial arbitrary Lagrangian-Eulerian methods , 2011, J. Comput. Phys..

[44]  R. Abgrall APPROXIMATION DU PROBLEME DE RIEMANN VRAIMENT MULTDIDIMENSIONNEL DES EQUATIONS D'EULER PAR UNE METHODE DE TYPE ROE (II) : SOLUTION DU PROBLEME DE RIEM ANN APPROCHE , 1994 .

[45]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[46]  Michael Dumbser,et al.  High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics , 2013, 1310.7256.

[47]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .

[48]  Jérôme Breil,et al.  A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction , 2010, J. Comput. Phys..

[49]  Armin Iske,et al.  Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..

[50]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[51]  Gerald Warnecke,et al.  Finite volume evolution Galerkin methods for Euler equations of gas dynamics , 2002 .

[52]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[53]  P. Knupp Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part II—A framework for volume mesh optimization and the condition number of the Jacobian matrix , 2000 .

[54]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[55]  J. S. Peery,et al.  Multi-Material ALE methods in unstructured grids , 2000 .

[56]  Pavel B. Bochev,et al.  Fast optimization-based conservative remap of scalar fields through aggregate mass transfer , 2013, J. Comput. Phys..

[57]  Bruno Després,et al.  Symmetrization of Lagrangian gas dynamic in dimension two and multidimensional solvers , 2003 .

[58]  Juan Cheng,et al.  Improvement on Spherical Symmetry in Two-Dimensional Cylindrical Coordinates for a Class of Control Volume Lagrangian Schemes , 2012 .

[59]  O. Friedrich,et al.  Weighted Essentially Non-Oscillatory Schemes for the Interpolation of Mean Values on Unstructured Grids , 1998 .

[60]  Rémi Abgrall APPROXIMATION DU PROBLEME DE RIEMANN VRAIMENT MULTIDIMENSIONNEL DES EQUATIONS D'EULER PAR UNE METHODE DE TYPE ROE (I) : LA LINEARISATION , 1994 .

[61]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[62]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[63]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[64]  A. Stroud Approximate calculation of multiple integrals , 1973 .

[65]  Chi-Wang Shu,et al.  A high order ENO conservative Lagrangian type scheme for the compressible Euler equations , 2007, J. Comput. Phys..

[66]  Michael Fey,et al.  Multidimensional Upwinding. Part II. Decomposition of the Euler Equations into Advection Equations , 1998 .

[67]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[68]  J. Falcovitz,et al.  A second-order Godunov-type scheme for compressible fluid dynamics , 1984 .

[69]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[70]  Miloslav Feistauer,et al.  The ALE Discontinuous Galerkin Method for the Simulatio of Air Flow Through Pulsating Human Vocal Folds , 2010 .

[71]  C. Ollivier-Gooch,et al.  A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation , 2002 .

[72]  Michael Dumbser,et al.  ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..

[73]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[74]  Mikhail Shashkov,et al.  A comparative study of multimaterial Lagrangian and Eulerian methods with pressure relaxation , 2013 .

[75]  Mikhail Shashkov,et al.  A finite volume cell‐centered Lagrangian hydrodynamics approach for solids in general unstructured grids , 2013 .

[76]  Dinshaw S. Balsara,et al.  Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .

[77]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[78]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[79]  Philip L. Roe,et al.  A multidimensional flux function with applications to the Euler and Navier-Stokes equations , 1993 .

[80]  Moshe Dubiner Spectral methods on triangles and other domains , 1991 .

[81]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[82]  John K. Dukowicz,et al.  A general, non-iterative Riemann solver for Godunov's method☆ , 1985 .

[83]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[84]  Guglielmo Scovazzi,et al.  Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach , 2012, J. Comput. Phys..

[85]  Claus-Dieter Munz,et al.  On Godunov-type schemes for Lagrangian gas dynamics , 1994 .

[86]  Yong-Tao Zhang,et al.  Third Order WENO Scheme on Three Dimensional Tetrahedral Meshes , 2008 .

[87]  M. Dumbser,et al.  High-Order Unstructured Lagrangian One-Step WENO Finite Volume Schemes for Non-Conservative Hyperbolic Systems: Applications to Compressible Multi-Phase Flows , 2013, 1304.4816.

[88]  Michael Dumbser,et al.  On Arbitrary-Lagrangian-Eulerian One-Step WENO Schemes for Stiff Hyperbolic Balance Laws , 2012, 1207.6407.

[89]  Miloslav Feistauer,et al.  Numerical simulation of interaction between turbulent flow and a vibrating airfoil , 2009 .

[90]  Michael Fey,et al.  Multidimensional Upwinding. Part I. The Method of Transport for Solving the Euler Equations , 1998 .

[91]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[92]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[93]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[94]  William J. Rider,et al.  Multi-material pressure relaxation methods for Lagrangian hydrodynamics , 2013 .

[95]  Eleuterio F. Toro,et al.  AOn WAF-Type Schemes for Multidimensional Hyperbolic Conservation Laws , 1997 .

[96]  David L. Book,et al.  Flux-corrected transport II: Generalizations of the method , 1975 .

[97]  R. Smith,et al.  AUSM(ALE) , 1999 .

[98]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[99]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[100]  Dinshaw S. Balsara A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..

[101]  Mikhail J. Shashkov,et al.  One-step hybrid remapping algorithm for multi-material arbitrary Lagrangian-Eulerian methods , 2012, J. Comput. Phys..

[102]  Jaromír Horácek,et al.  Simulation of compressible viscous flow in time-dependent domains , 2013, Appl. Math. Comput..

[103]  Raphaël Loubère,et al.  ReALE: A Reconnection Arbitrary-Lagrangian―Eulerian method in cylindrical geometry , 2011 .

[104]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[105]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[106]  Guglielmo Scovazzi,et al.  A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements , 2011, J. Comput. Phys..

[107]  Chi-Wang Shu,et al.  A cell-centered Lagrangian scheme with the preservation of symmetry and conservation properties for compressible fluid flows in two-dimensional cylindrical geometry , 2010, J. Comput. Phys..

[108]  Armin Iske,et al.  ADER schemes on adaptive triangular meshes for scalar conservation laws , 2005 .