Growth, Physics, and Device Applications of InAs-based Nanowires

[1]  U. Gösele,et al.  Silicon nanowhiskers grown on 〈111〉Si substrates by molecular-beam epitaxy , 2004 .

[2]  C Lavoie,et al.  Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. , 2001, Physical review letters.

[3]  G. E. Cirlin,et al.  On the non‐monotonic lateral size dependence of the height of GaAs nanowhiskers grown by molecular beam epitaxy at high temperature , 2004 .

[4]  M. Kaiser,et al.  Epitaxial growth of InP nanowires on germanium , 2004, Nature materials.

[5]  E. Bakkers,et al.  Growth kinetics of heterostructured GaP-GaAs nanowires. , 2006, Journal of the American Chemical Society.

[6]  R. Chau,et al.  Benchmarking nanotechnology for high-performance and low-power logic transistor applications , 2004, IEEE Transactions on Nanotechnology.

[7]  W. Prost,et al.  High Transconductance MISFET With a Single InAs Nanowire Channel , 2007, IEEE Electron Device Letters.

[8]  Lars Samuelson,et al.  Tunable double quantum dots in InAs nanowires defined by local gate electrodes. , 2005, Nano letters.

[9]  B. Joyce,et al.  Temporal intensity variations in RHEED patterns during film growth of GaAs by MBE , 1983 .

[10]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[11]  D. Kim,et al.  High-Brightness Light Emitting Diodes Using Dislocation-Free Indium Gallium Nitride/Gallium Nitride Multiquantum-Well Nanorod Arrays , 2004 .

[12]  C. Foxon,et al.  Interaction kinetics of As4 and Ga on {100} GaAs surfaces using a modulated molecular beam technique , 1975 .

[13]  T. Katsuyama,et al.  The Growth Mechanism of Nanometer-scale GaAs, InAs, and AlGaAs Whiskers , 2006 .

[14]  M. Kastner,et al.  The single-electron transistor , 1992 .

[15]  A. Y. Cho,et al.  Film Deposition by Molecular-Beam Techniques , 1971 .

[16]  Wave-function mapping conditions in open quantum dot structures , 2003, cond-mat/0303399.

[17]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[18]  Lars Samuelson,et al.  Electron transport in InAs nanowires and heterostructure nanowire devices , 2004 .

[19]  S. Sze Semiconductor Devices: Physics and Technology , 1985 .

[20]  D. DiVincenzo,et al.  Quantum computation with quantum dots , 1997, cond-mat/9701055.

[21]  D. C. Tsui,et al.  Two-Dimensional Magnetotransport in the Extreme Quantum Limit , 1982 .

[22]  S. Tarucha,et al.  Few-electron quantum dots , 2001 .

[23]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[24]  W. Walukiewicz Fermi level dependent native defect formation: Consequences for metal-semiconductor and semiconductor-semiconductor interfaces , 1988 .

[25]  L. Samuelson,et al.  InAs1-xPx nanowires for device engineering. , 2006, Nano letters.

[26]  Raphael Tsu,et al.  Superlattice and negative differential conductivity in semiconductors , 1970 .

[27]  N. Yokoyama,et al.  Single electron spectroscopy in a single pair of weakly coupled self-assembled InAs quantum dots , 2004 .

[28]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[29]  S. Kodambaka,et al.  Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. , 2006, Physical review letters.

[30]  Walter Riess,et al.  Silicon nanowire tunneling field-effect transistors , 2008 .

[31]  W. Hume-rothery,et al.  The equilibrium diagram of the system gold-indium , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[32]  M. Lundstrom,et al.  Essential physics of carrier transport in nanoscale MOSFETs , 2002 .

[33]  Konstantin K. Likharev,et al.  Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions , 1986 .

[34]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[35]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[36]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[37]  E. Lundgren,et al.  GaAs/AlGaAs nanowire heterostructures studied by scanning tunneling microscopy. , 2007, Nano letters.

[38]  H. Heinecke,et al.  Evaluation of cracking efficiency of As and P precursors , 1997 .

[39]  W. Tsang Chemical beam epitaxy of InP and GaAs , 1984 .

[40]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[41]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[42]  Paul L. McEuen,et al.  Electron Transport in Quantum Dots , 1997 .

[43]  C. Gorter,et al.  A possible explanation of the increase of the electrical resistance of thin metal films at low temperatures and small field strengths , 1951 .

[44]  Lars Samuelson,et al.  Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. , 2005, Nano letters.

[45]  M. Leys,et al.  Investigations on indium phosphide grown by chemical beam epitaxy , 1995 .

[46]  N. V. Sibirev,et al.  Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Noguchi,et al.  Intrinsic electron accumulation layers on reconstructed clean InAs(100) surfaces. , 1991, Physical review letters.

[48]  I. Lindau,et al.  Unified defect model and beyond , 1980 .

[49]  Wonill Ha,et al.  Enhancement-Mode Metamorphic HEMT on GaAs Substrate With 2 S/mm $g_{m}$ and 490 GHz $f_{T}$ , 2008, IEEE Electron Device Letters.

[50]  J. Plummer,et al.  Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET's , 1997, IEEE Electron Device Letters.

[51]  Lars Samuelson,et al.  Epitaxial Growth of Indium Arsenide Nanowires on Silicon Using Nucleation Templates Formed by Self‐Assembled Organic Coatings , 2007 .

[52]  Bruce Alberts,et al.  Essential Cell Biology , 1983 .

[53]  T. Baba Proposal for Surface Tunnel Transistors , 1992 .

[54]  L. Samuelson,et al.  Mass transport model for semiconductor nanowire growth. , 2005, The journal of physical chemistry. B.