Langley Calibration Analysis of Solar Spectroradiometric Measurements: Spectral Aerosol Optical Thickness Retrievals

Aerosol optical thickness (τaer) is a fundamental parameter for analyzing aerosol loading and associated radiative effects. The τaer can constrain many inversion algorithms using passive/active sensor measurements to retrieve other aerosol properties and/or the abundance of trace gases. In the next wave of spectroradiometric observations from geostationary platforms, we envision that a strategically distributed network of robust, well‐calibrated ground‐based spectroradiometers will comprehensively complement spaceborne measurements in spectral and temporal domains. Spectral τaer can be accurately obtained from direct‐Sun measurements based on the Langley calibration method, which allows for the analysis of distinct spectral features of the calibration results. In this study, we present a spectral τaer retrieval algorithm for an in‐house developed, field deployable spectroradiometer instrument covering wavelengths from ultraviolet to near‐infrared (UV‐Vis‐NIR). The spectral total optical thickness obtained from the Langley calibration method is partitioned into molecular and particulate components by utilizing a least squares method. The resulting high temporal‐resolution τaer and Ångström Exponent can be used effectively for cloud screening. The new algorithm was applied to month‐long measurements acquired from the rooftop at National Aeronautics and Space Administration Goddard Space Flight Center's Building 33. The retrieved τaer demonstrated excellent agreement with those from well‐calibrated Aerosol Robotic Network Sun photometers at all overlapping wavelengths (correlation coefficients higher than 0.98). In addition, empirical stray light corrections considerably improved τaer retrievals at short wavelengths in the UV. The continuous spectrum of τaer from UV‐Vis‐NIR spectroradiometers is expected to provide more informative constraints for retrieval of additional aerosol properties such as refractive indices, size, and bulk vertical distribution.

[1]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[2]  R. Martin,et al.  Retrieving tropospheric nitrogen dioxide from the Ozone Monitoring Instrument: effects of aerosols, surface reflectance anisotropy, and vertical profile of nitrogen dioxide , 2013 .

[3]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[4]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[5]  Johannes Orphal,et al.  Revised ultraviolet absorption cross sections of H2CO for the HITRAN database , 2011 .

[6]  Jay R. Herman,et al.  Spectral derivative analysis of solar spectroradiometric measurements: Theoretical basis , 2014 .

[7]  C. Frankenberg,et al.  Monitoring of atmospheric trace gases, clouds, aerosols and surface properties from UV/vis/NIR satellite instruments , 2008 .

[8]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[9]  Larry W. Thomason,et al.  The Effect of Atmospheric Attenuators with Structured Vertical Distributions on Air Mass Determinations and Langley Plot Analyses , 1983 .

[10]  Robert J. D. Spurr,et al.  VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media , 2006 .

[11]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[12]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[13]  G. Yamamoto,et al.  Determination of aerosol size distribution from spectral attenuation measurements. , 1969, Applied optics.

[14]  D P Edwards,et al.  Tropospheric emissions: monitoring of pollution (TEMPO) , 2012, Optics & Photonics - Optical Engineering + Applications.

[15]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[16]  J. Slusser,et al.  Langley method of calibrating UV filter radiometers , 2000 .

[17]  V. Kirchhoff,et al.  UV-B optical thickness observations of the atmosphere , 2001 .

[18]  H. Grassl Determination of aerosol size distributions from spectral attenuation measurements. , 1971, Applied optics.

[19]  G. Shaw Solar spectral irradiance and atmospheric transmission at Mauna Loa Observatory. , 1982, Applied optics.

[20]  S. Tsay,et al.  A novel nonintrusive method to resolve the thermal dome effect of pyranometers: Instrumentation and observational basis , 2010 .

[21]  M.,et al.  Aerosol Size Distributions Obtained by Inversion of Spectral Optical Depth Measurements , 1978 .

[22]  J. Veefkind,et al.  Impact of aerosols on the OMI tropospheric NO 2 retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model? , 2015 .

[23]  Ellsworth J. Welton,et al.  Global monitoring of clouds and aerosols using a network of micropulse lidar systems , 2001, SPIE Asia-Pacific Remote Sensing.

[24]  D. Clark,et al.  Stray light correction algorithm for multichannel hyperspectral spectrographs. , 2012, Applied optics.

[25]  K. Lau,et al.  A novel nonintrusive method to resolve the thermal dome effect of pyranometers: Radiometric calibration and implications , 2011 .

[26]  Paul Ingmann,et al.  Requirements for the GMES Atmosphere Service and ESA's implementation concept: Sentinels-4/-5 and -5p , 2012 .

[27]  J. Brion,et al.  High-resolution laboratory absorption cross section of O3. Temperature effect , 1993 .

[28]  Michael D. King,et al.  Aerosol size distributions obtained by inversion of spectral optical depth measurements , 1978 .

[29]  Michael Eisinger,et al.  The GOME-2 instrument on the Metop series of satellites: instrument design, calibration, and level 1 data processing – an overview , 2015 .

[30]  M. Baumann,et al.  Problems of UV-B radiation measurements in biological research. Critical remarks on current techniques and suggestions for improvements , 1994 .

[31]  Jay R. Herman,et al.  Comparison of ozone retrievals from the Pandora spectrometer system and Dobson spectrophotometer in Boulder, Colorado , 2015 .

[32]  Yuqin Zong,et al.  Simple spectral stray light correction method for array spectroradiometers. , 2006, Applied optics.

[33]  D. Jacob Heterogeneous chemistry and tropospheric ozone , 2000 .

[34]  P. Crutzen The influence of nitrogen oxides on the atmospheric ozone content , 1970 .

[35]  Jun Wang,et al.  Advancing measurements of tropospheric NO2 from space: New algorithm and first global results from OMPS , 2014 .

[36]  B. Holben,et al.  Satellite-Surface Perspectives of Air Quality and Aerosol-Cloud Effects on the Environment: An Overview of 7-SEAS BASELInE , 2016 .

[37]  J. Brion,et al.  Absorption Spectra Measurements for the Ozone Molecule in the 350–830 nm Region , 1998 .

[38]  John P. Burrows,et al.  On the improvement of NO 2 satellite retrievals – aerosol impact on the airmass factors , 2009 .

[39]  L. Folinsbee Human health effects of air pollution. , 1993, Environmental health perspectives.

[40]  S. P. Langley The Bolometer and Radiant Energy , 1880 .

[41]  P. Bhartia,et al.  Impact of tropospheric aerosol absorption on ozone retrieval from backscattered ultraviolet measurements , 1999 .

[42]  Jhoon Kim,et al.  Investigation of Simultaneous Effects of Aerosol Properties and Aerosol Peak Height on the Air Mass Factors for Space-Borne NO2 Retrievals , 2017, Remote. Sens..

[43]  A. Vandaele,et al.  SO2 Absorption Cross-section Measurement in the UV using a Fourier Transform Spectrometer , 1994 .

[44]  A. Cheymol,et al.  Retrieval of the aerosol optical depth in the UV-B at Uccle from Brewer ozone measurements over a long time period 1984-2002 , 2003 .

[45]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[46]  B. Forgan,et al.  In situ calibration technique for UV spectral radiometers. , 1995, Applied optics.

[47]  Kelly Chance,et al.  GOME wavelength calibration using solar and atmospheric spectra , 1997 .

[48]  R. Schotland,et al.  Bias in a solar constant determination by the Langley method due to structured atmospheric aerosol. , 1986, Applied optics.

[49]  Maria Tzortziou,et al.  NO2 column amounts from ground‐based Pandora and MFDOAS spectrometers using the direct‐sun DOAS technique: Intercomparisons and application to OMI validation , 2009 .

[50]  Jun Wang,et al.  Retrieval of aerosol microphysical properties from AERONET photopolarimetric measurements: 2. A new research algorithm and case demonstration , 2015 .

[51]  Michael D. King,et al.  A Method for Inferring Total Ozone Content from the Spectral Variation of Total Optical Depth Obtained with a Solar Radiometer , 1976 .

[52]  Maria Tzortziou,et al.  High precision, absolute total column ozone measurements from the Pandora spectrometer system: Comparisons with data from a Brewer double monochromator and Aura OMI , 2012 .

[53]  D. Tanré,et al.  Advanced characterisation of aerosol size properties from measurements of spectral optical depth using the GRASP algorithm , 2016, Atmospheric measurement techniques.

[54]  Comment on “Problems of UV-B radiation measurements in biological research: Critical remarks on current techniques and suggestions for improvements” by H. Tüg and M. E. M. Baumann , 1995 .

[55]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[56]  T. Wilbanks,et al.  Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[57]  Kelly Chance,et al.  An improved high-resolution solar reference spectrum for earth's atmosphere measurements in the ultraviolet, visible, and near infrared , 2010 .

[58]  Michael Eisinger,et al.  The Global Ozone Monitoring Experiment (GOME): Mission Concept and First Scientific Results , 1999 .

[59]  James B. Burkholder,et al.  Absorption measurements of oxygen between 330 and 1140 nm , 1990 .

[60]  T. Wagner,et al.  Multi axis differential optical absorption spectroscopy (MAX-DOAS) of gas and aerosol distributions. , 2005, Faraday discussions.