Effective Noether irreducibility forms and applications

An absolutely irreducible multivariate polynomial is a polynomial that cannot be factored even if the coefficients of the factors can Yle in any field above the original coefficient field. For example, an absolutely irreducible polyn~ mial with rational number coefficients does not factor over the field of complex numbers. We consider algorithms that factor a multivariate polynomial into absolutely irreducible polynomials. Our contributions are essentially threefold. First, we estimate the blt complexity of our “generic” algorithms, which are defined for algebraic extensions of an arbitrary coefficient field, so that the polynomial size growth estimates apply to any input field in which elements are canonical y represented. The generic analysis also yields several effective irreducibility y theorems, among them a new effective Hilbert irreducibility theorem, which reduces the number of random bits previously needed when factoring polynomials in many variables. Finally, we introduce the “single path lazy factorization” representation model for elements in algebraic extension fields, with which the problem of factoring polynomials with rational number or rational function coefficients can be solved within the parallel computational complexity class MC. As a consequence, arbitrary high precision complex rational approximations or, in the function field case, truncated power series approximations, of the factor coefficients can be computed from our representation, again within NC complexity. One of our irreducibility y theorems also gives an upper bound on the accuracy needed to keep the approximations of the absolutely irreducible factors themselves absolutely irreducible.

[1]  J. Shepherdson,et al.  Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[2]  D. Hilbert,et al.  Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten , 1933 .

[3]  Joos Heintz,et al.  Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.

[4]  James H. Davenport,et al.  The Bath algebraic number package , 1986, SYMSAC '86.

[5]  Joachim von zur Gathen,et al.  Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..

[6]  Emmy Noether Ein algebraisches Kriterium für absolute Irreduzibilität , 1922 .

[7]  K. Mahler An inequality for the discriminant of a polynomial. , 1964 .

[8]  Alexander Ostrowski,et al.  Zur arithmetischen Theorie der algebraischen Grössen , 1984 .

[9]  Roberto Dvornicich,et al.  Newton Symmetric Functions and the Arithmetic of Algebraically Closed Fields , 1987, AAECC.

[10]  Allan Borodin,et al.  Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[11]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[12]  Marek Karpinski,et al.  Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields , 1988, SIAM J. Comput..

[13]  Michael Ben-Or,et al.  A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.

[14]  James H. Davenport,et al.  Factorization over finitely generated fields , 1981, SYMSAC '81.

[15]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[16]  Wendy Hall,et al.  The art of programming , 1987 .

[17]  Richard Zippel,et al.  Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..

[18]  J. D. Lipson Elements of algebra and algebraic computing , 1981 .

[19]  Erich Kaltofen,et al.  Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  Ketan Mulmuley,et al.  A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1986, STOC '86.

[22]  B. L. Waerden Eine Bemerkung über die Unzerlegbarkeit von Polynomen , 1930 .

[23]  M. Deuring,et al.  Reduktion algebraischer Funktionenkörper nach Primdivisoren des Konstantenkörpers , 1942 .

[24]  Arjen K. Lenstra Polynomial - time algorithms for the factorization of polynomials , 1984, Bull. EATCS.

[25]  Erich Kaltofen,et al.  Improved Sparse Multivariate Polynomial Interpolation Algorithms , 1988, ISSAC.

[26]  Dominique Duval,et al.  Absolute Factorization of Polynomials: A Geometric Approach , 1991, SIAM J. Comput..

[27]  W. Schmidt Equations over Finite Fields: An Elementary Approach , 1976 .

[28]  Erich Kaltofen,et al.  Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[29]  Stephen A. Cook,et al.  A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..

[30]  Erich Kaltofen,et al.  Effective Hilbert Irreducibility , 1984, Inf. Control..

[31]  C. Andrew Neff,et al.  Specified precision polynomial root isolation is in NC , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[32]  John F. Canny,et al.  Factoring rational polynomials over the complexes , 1989, ISSAC '89.

[33]  Erich Kaltofen,et al.  Fast Parallel Absolute Irreducibility Testing , 1985, J. Symb. Comput..

[34]  James H. Davenport,et al.  On the Integration of Algebraic Functions , 1979, Lecture Notes in Computer Science.

[35]  Joachim von zur Gathen Parallel algorithms for algebraic problems , 1983, STOC '83.

[36]  Erich Kaltofen,et al.  Polynomial-Time Reductions from Multivariate to Bi- and Univariate Integral Polynomial Factorization , 1985, SIAM J. Comput..