Effective Noether irreducibility forms and applications
暂无分享,去创建一个
[1] J. Shepherdson,et al. Effective procedures in field theory , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[2] D. Hilbert,et al. Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten , 1933 .
[3] Joos Heintz,et al. Absolute Primality of Polynomials is Decidable in Random Polynomial Time in the Number of Variables , 1981, ICALP.
[4] James H. Davenport,et al. The Bath algebraic number package , 1986, SYMSAC '86.
[5] Joachim von zur Gathen,et al. Irreducibility of Multivariate Polynomials , 1985, J. Comput. Syst. Sci..
[6] Emmy Noether. Ein algebraisches Kriterium für absolute Irreduzibilität , 1922 .
[7] K. Mahler. An inequality for the discriminant of a polynomial. , 1964 .
[8] Alexander Ostrowski,et al. Zur arithmetischen Theorie der algebraischen Grössen , 1984 .
[9] Roberto Dvornicich,et al. Newton Symmetric Functions and the Arithmetic of Algebraically Closed Fields , 1987, AAECC.
[10] Allan Borodin,et al. Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).
[11] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[12] Marek Karpinski,et al. Fast Parallel Algorithms for Sparse Multivariate Polynomial Interpolation over Finite Fields , 1988, SIAM J. Comput..
[13] Michael Ben-Or,et al. A deterministic algorithm for sparse multivariate polynomial interpolation , 1988, STOC '88.
[14] James H. Davenport,et al. Factorization over finitely generated fields , 1981, SYMSAC '81.
[15] Joseph F. Traub,et al. On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.
[16] Wendy Hall,et al. The art of programming , 1987 .
[17] Richard Zippel,et al. Interpolating Polynomials from Their Values , 1990, J. Symb. Comput..
[18] J. D. Lipson. Elements of algebra and algebraic computing , 1981 .
[19] Erich Kaltofen,et al. Factorization of Polynomials Given by Straight-Line Programs , 1989, Adv. Comput. Res..
[20] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[21] Ketan Mulmuley,et al. A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1986, STOC '86.
[22] B. L. Waerden. Eine Bemerkung über die Unzerlegbarkeit von Polynomen , 1930 .
[23] M. Deuring,et al. Reduktion algebraischer Funktionenkörper nach Primdivisoren des Konstantenkörpers , 1942 .
[24] Arjen K. Lenstra. Polynomial - time algorithms for the factorization of polynomials , 1984, Bull. EATCS.
[25] Erich Kaltofen,et al. Improved Sparse Multivariate Polynomial Interpolation Algorithms , 1988, ISSAC.
[26] Dominique Duval,et al. Absolute Factorization of Polynomials: A Geometric Approach , 1991, SIAM J. Comput..
[27] W. Schmidt. Equations over Finite Fields: An Elementary Approach , 1976 .
[28] Erich Kaltofen,et al. Computing with polynomials given by black boxes for their evaluations: greatest common divisors, factorization, separation of numerators and denominators , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[29] Stephen A. Cook,et al. A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..
[30] Erich Kaltofen,et al. Effective Hilbert Irreducibility , 1984, Inf. Control..
[31] C. Andrew Neff,et al. Specified precision polynomial root isolation is in NC , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.
[32] John F. Canny,et al. Factoring rational polynomials over the complexes , 1989, ISSAC '89.
[33] Erich Kaltofen,et al. Fast Parallel Absolute Irreducibility Testing , 1985, J. Symb. Comput..
[34] James H. Davenport,et al. On the Integration of Algebraic Functions , 1979, Lecture Notes in Computer Science.
[35] Joachim von zur Gathen. Parallel algorithms for algebraic problems , 1983, STOC '83.
[36] Erich Kaltofen,et al. Polynomial-Time Reductions from Multivariate to Bi- and Univariate Integral Polynomial Factorization , 1985, SIAM J. Comput..