Spatial-sequential-spectral context awareness tracking

Visual context has formed a robust stimulation for visual perception. Spatio-temporal context in existing trackers sometimes shows weak reliability in visible light videos with poor quality. Supplemented by the infrared perception, this work exploits the role of visual context in tracking in a spatial-sequential-spectral view, by which to excavate dominance of different contexts in various scenarios. Specifically, we infer it in the Fourier domain with a real-time speed, and incorporate a fully-occlusion handling and scale adaptation with a trajectory regression filter and object contour closure, respectively. Extensive experiments on 50 video clips simultaneously containing registered RGB and thermal bands demonstrate that our tracker shows a state-of-the-art performance.

[1]  PETER J. ROUSSEEUW,et al.  Computing LTS Regression for Large Data Sets , 2005, Data Mining and Knowledge Discovery.

[2]  Serge J. Belongie,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  Gang Hua,et al.  Context-Aware Visual Tracking , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[5]  Gérard G. Medioni,et al.  Context tracker: Exploring supporters and distracters in unconstrained environments , 2011, CVPR 2011.

[6]  Philip H. S. Torr,et al.  Struck: Structured output tracking with kernels , 2011, 2011 International Conference on Computer Vision.

[7]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[8]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[9]  Huchuan Lu,et al.  Robust object tracking via sparsity-based collaborative model , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Deva Ramanan,et al.  Self-Paced Learning for Long-Term Tracking , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Qi Wang,et al.  Robust Superpixel Tracking via Depth Fusion , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[12]  David Zhang,et al.  Fast Visual Tracking via Dense Spatio-temporal Context Learning , 2014, ECCV.

[13]  Jin Gao,et al.  Transfer Learning Based Visual Tracking with Gaussian Processes Regression , 2014, ECCV.

[14]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[15]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[17]  Rui Caseiro,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence High-speed Tracking with Kernelized Correlation Filters , 2022 .

[18]  Ming-Hsuan Yang,et al.  Long-term correlation tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Yang Li,et al.  Reliable Patch Trackers: Robust visual tracking by exploiting reliable patches , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Michael Felsberg,et al.  The Thermal Infrared Visual Object Tracking VOT-TIR2015 Challenge Results , 2015, ICCV Workshops.

[21]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Hanqing Lu,et al.  Weighted Part Context Learning for Visual Tracking , 2015, IEEE Transactions on Image Processing.

[23]  Bohyung Han,et al.  Modeling and Propagating CNNs in a Tree Structure for Visual Tracking , 2016, ArXiv.

[24]  Luca Bertinetto,et al.  Staple: Complementary Learners for Real-Time Tracking , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Xiao-Ping Zhang,et al.  Saliency prior context model for visual tracking , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[26]  Liang Lin,et al.  Learning Collaborative Sparse Representation for Grayscale-Thermal Tracking. , 2016, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[27]  Michael Felsberg,et al.  Discriminative Scale Space Tracking , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Qi Wang,et al.  Online hash tracking with spatio-temporal saliency auxiliary , 2017, Comput. Vis. Image Underst..