Sufficient Condition for State-Space Representation of N-D Discrete-Time Lossless Bounded Real Matrix and N-D Stability of Mansour Matrix

[1]  Zhiping Lin On matrix fraction descriptions of multivariable linear n-D systems , 1988 .

[2]  G. E. Antoniou,et al.  Minimal state-space realization of factorable 2-D transfer functions , 1988 .

[3]  Vimal Singh,et al.  A new proof of the discrete-time bounded-real lemma and lossless bounded-real lemma , 1987 .

[4]  P. Dewilde,et al.  On lossless transfer functions and orthogonal realizations , 1987 .

[5]  P. Vaidyanathan,et al.  A unified structural interpretation of some well-known stability-test procedures for linear systems , 1987, Proceedings of the IEEE.

[6]  M. Sudhakara Reddy,et al.  Realization of first-order two-dimensional all-pass digital filters , 1986, IEEE Trans. Acoust. Speech Signal Process..

[7]  Kamal Premaratne,et al.  Model reduction of two-dimensional discrete systems , 1986 .

[8]  Sanjit K. Mitra,et al.  A general family of multivariable digital lattice filters , 1985 .

[9]  P. Vaidyanathan The discrete-time bounded-real lemma in digital filtering , 1985 .

[10]  Sanjit K. Mitra,et al.  A general theory and synthesis procedure for low-sensitivity active RC filters , 1985 .

[11]  P. P. Vaidyanathan,et al.  A unified approach to orthogonal digital filters and wave digital filters, based on LBR two-pair extraction , 1985 .

[12]  M. Bisiacco On the state reconstruction of 2D systems , 1985 .

[13]  T. Kaczorek Two-Dimensional Linear Systems , 1985 .

[14]  A. H. Kayran,et al.  Lattice parameter autoregressive modeling of two-dimensional fields--Part I: The quarter-plane case , 1984 .

[15]  P.P. Vaidyanathan,et al.  Low passband sensitivity digital filters: A generalized viewpoint and synthesis procedures , 1984, Proceedings of the IEEE.

[16]  Dan E. Dudgeon,et al.  Multidimensional Digital Signal Processing , 1983 .

[17]  Nozomu Hamada,et al.  SYNTHESIS OF LATTICE DIGITAL FILTERS BY THE STATE VARIABLE METHOD. , 1982 .

[18]  R. Roberts,et al.  Roundoff noise in digital filters: Frequency transformations and invariants , 1976 .

[19]  R. Roesser A discrete state-space model for linear image processing , 1975 .

[20]  J. Shanks,et al.  Stability criterion for N -dimensional digital filters , 1973 .

[21]  P. Parks A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  D. Youla,et al.  On the factorization of rational matrices , 1961, IRE Trans. Inf. Theory.

[23]  R. E. Kalman,et al.  Control System Analysis and Design Via the “Second Method” of Lyapunov: I—Continuous-Time Systems , 1960 .

[24]  H. Schwarz,et al.  Ein Verfahren zur Stabilitätsfrage bei Matrizen-Eigenwertproblemen , 1956 .

[25]  P. Vaidyanathan,et al.  The digital all-pass filter: a versatile signal processing building block , 1988, Proc. IEEE.

[26]  Thomas S. Huang,et al.  Stability of two-dimensional recursive filters , 1972 .

[27]  M. Mansour,et al.  Die Stabilität linearer Abtastsysteme und die „Zweite Methode“ von Lyapunov , 1965 .