Evolutionary computation applied to the tuning of MEMS gyroscopes

We propose a tuning method for MEMS gyroscopes based on evolutionary computation to efficiently increase the sensitivity of MEMS gyroscopes through tuning and, furthermore, to find the optimally tuned configuration for this state of increased sensitivity. The tuning method was tested for the second generation JPL/Boeing Post-resonator MEMS gyroscope using the measurement of the frequency response of the MEMS device in open-loop operation.

[1]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[2]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[3]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[5]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[6]  Deniz Yuret,et al.  Dynamic Hill Climbing: Overcoming the limitations of optimization techniques , 1993 .

[7]  Robert Patton Leland Adaptive mode tuning for vibrational gyroscopes , 2003, IEEE Trans. Control. Syst. Technol..

[8]  Kenneth J. Hayworth Continuous Tuning and Calibration of Vibratory Gyroscopes , 2003 .

[9]  Andrei M. Shkel,et al.  Active structural error suppression in MEMS vibratory rate integrating gyroscopes , 2003 .

[10]  Tuan A. Tran,et al.  A control and signal Processing integrated circuit for the JPL-boeing micromachined gyroscopes , 2005, IEEE Transactions on Control Systems Technology.

[11]  D. Keymeulen,et al.  A Hardware Platform for Tuning of MEMS Devices Using Closed-Loop Frequency Response , 2005, 2005 IEEE Aerospace Conference.

[12]  M. I. Ferguson,et al.  Evolutionary computation technologies for space systems , 2005, 2005 IEEE Aerospace Conference.