Photocatalytic activity of bulk TiO2 anatase and rutile single crystals using infrared absorption spectroscopy.

A systematic study on the photocatalytic activity of well-defined, macroscopic bulk single-crystal TiO(2) anatase and rutile samples has been carried out, which allows us to link photoreactions at surfaces of well-defined oxide semiconductors to an important bulk property with regard to photochemistry, the life time of e-h pairs generated in the bulk of the oxides by photon absorption. The anatase (101) surface shows a substantially higher activity, by an order of magnitude, for CO photo-oxidation to CO(2) than the rutile (110) surface. This surprisingly large difference in activity tracks the bulk e-h pair lifetime difference for the two TiO(2) modifications as determined by contactless transient photoconductance measurements on the corresponding bulk materials.

[1]  M. Hybertsen,et al.  Quasiparticle and optical properties of rutile and anatase TiO 2 , 2010, 1006.4085.

[2]  J. N. Wilson,et al.  Photoreaction of the rutile TiO2(011) single-crystal surface: reaction with acetic acid. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[3]  C. Wöll,et al.  Monitoring electronic structure changes of TiO2(110) via sign reversal of adsorbate vibrational bands. , 2010, Physical chemistry chemical physics : PCCP.

[4]  Á. Rubio,et al.  Self-energy and excitonic effects in the electronic and optical properties of TiO2 crystalline phases , 2010, 1003.6010.

[5]  A. Fisher,et al.  Electron traps and their effect on the surface chemistry of TiO2(110) , 2010, Proceedings of the National Academy of Sciences.

[6]  Ulrike Diebold,et al.  Reactivity of TiO2 rutile and anatase surfaces toward nitroaromatics. , 2010, Journal of the American Chemical Society.

[7]  B. D. Kay,et al.  Imaging hindered rotations of alkoxy species on TiO(2)(110). , 2009, Journal of the American Chemical Society.

[8]  M. Muhler,et al.  A new dual-purpose ultrahigh vacuum infrared spectroscopy apparatus optimized for grazing-incidence reflection as well as for transmission geometries. , 2009, The Review of scientific instruments.

[9]  Y. Iwasawa,et al.  Surface-mediated visible-light photo-oxidation on pure TiO(2)(001). , 2009, Journal of the American Chemical Society.

[10]  O. Dulub,et al.  Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). , 2009, Nature materials.

[11]  Yunbin He,et al.  Evidence for the predominance of subsurface defects on reduced anatase TiO2(101). , 2009, Physical review letters.

[12]  Robert Lindsay,et al.  Chemical reactions on rutile TiO2(110). , 2008, Chemical Society reviews.

[13]  A. Furube,et al.  Electron–hole recombination in the bulk of a rutile TiO2 single crystal studied by sub-nanosecond transient absorption spectroscopy , 2008 .

[14]  M. Muhler,et al.  Direct monitoring of photo-induced reactions on well-defined metal oxide surfaces using vibrational spectroscopy , 2008 .

[15]  B. Hammer,et al.  The Role of Interstitial Sites in the Ti3d Defect State in the Band Gap of Titania , 2008, Science.

[16]  C. Adamo,et al.  Density functional theory analysis of the structural and electronic properties of TiO2 rutile and anatase polytypes: performances of different exchange-correlation functionals. , 2007, The Journal of chemical physics.

[17]  A. K. Tyagi,et al.  Physics and chemistry of photocatalytic titanium dioxide: visualization of bactericidal activity using atomic force microscopy , 2006 .

[18]  Hiroshi Onishi,et al.  Direct visualization of defect-mediated dissociation of water on TiO2(110) , 2006 .

[19]  B. Hammer,et al.  Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: A combined high-resolution STM and DFT study , 2005 .

[20]  I. Stensgaard,et al.  Electron Transfer-Induced Dynamics of Oxygen Molecules on the TiO2(110) Surface , 2004, Science.

[21]  Renald Schaub,et al.  Oxygen-Mediated Diffusion of Oxygen Vacancies on the TiO2(110) Surface , 2002, Science.

[22]  U. Diebold,et al.  Scanning tunneling microscopy investigation of the TiO2 anatase (101) surface , 2000 .

[23]  Iwasawa,et al.  Hydrogen adatoms on TiO2(110)-(1x1) characterized by scanning tunneling microscopy and electron stimulated desorption , 2000, Physical review letters.

[24]  Jong‐Liang Lin,et al.  FTIR study of adsorption and reactions of methyl formate on powdered TiO2 , 1999 .

[25]  M. Kuhn,et al.  Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen: a scanning tunneling microscopy study , 1998 .

[26]  Ng,et al.  Evidence for the Tunneling Site on Transition-Metal Oxides: TiO2(110). , 1996, Physical review letters.

[27]  L. Kavan,et al.  Nanocrystalline TiO2 (Anatase) Electrodes: Surface Morphology, Adsorption, and Electrochemical Properties , 1996 .

[28]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[29]  Francis Levy,et al.  Photoluminescence in TiO2 anatase single crystals , 1993 .

[30]  A. Varma,et al.  An in situ diffuse reflectance FTIR investigation of photocatalytic degradation of 4-chlorophenol on a TiO2 powder surface , 1993 .

[31]  Keiichi Tanaka,et al.  Effect of crystallinity of TiO2 on its photocatalytic action , 1991 .

[32]  J. Pascual,et al.  Fine structure in the intrinsic absorption edge of Ti O 2 , 1978 .

[33]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[34]  Mattias Nilsing,et al.  DFT study of bare and dye-sensitized TiO2 clusters and nanocrystals , 2006 .

[35]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[36]  G. Ertl,et al.  Catalysis and Surface Science , 1999 .

[37]  J. Bolton,et al.  The Use of Iron in Advanced Oxidation Processes , 1996 .