Surface Diffusion Is Controlled by Bulk Fragility across All Glass Types.

Surface diffusion is vastly faster than bulk diffusion in some glasses, but only moderately enhanced in others. We show that this variation is closely linked to bulk fragility, a common measure of how quickly dynamics is excited when a glass is heated to become a liquid. In fragile molecular glasses, surface diffusion can be a factor of 10^{8} faster than bulk diffusion at the glass transition temperature, while in the strong system SiO_{2}, the enhancement is a factor of 10. Between these two extremes lie systems of intermediate fragility, including metallic glasses and amorphous selenium and silicon. This indicates that stronger liquids have greater resistance to dynamic excitation from bulk to surface and enables prediction of surface diffusion, surface crystallization, and formation of stable glasses by vapor deposition.

[1]  D. Morgan,et al.  Factors correlating to enhanced surface diffusion in metallic glasses. , 2021, The Journal of chemical physics.

[2]  Lian Yu,et al.  Surface mobility in amorphous selenium and comparison with organic molecular glasses. , 2021, The Journal of chemical physics.

[3]  Z. Fakhraai,et al.  Polyamorphism of vapor-deposited amorphous selenium in response to light , 2020, Proceedings of the National Academy of Sciences.

[4]  Jiang Ma,et al.  Cold joining to fabricate large size metallic glasses by the ultrasonic vibrations , 2020 .

[5]  J. Perepezko,et al.  Surface dynamics measurement on a gold based metallic glass , 2020 .

[6]  J. Deubener,et al.  High rate calorimetry derived viscosity of oxide melts prone to crystallization , 2020 .

[7]  M. Bauchy,et al.  On the equivalence of vapor-deposited and melt-quenched glasses. , 2020, The Journal of chemical physics.

[8]  B. Savoie,et al.  Temperature and pressure dependence of the alpha relaxation in ortho-terphenyl. , 2020, The Journal of chemical physics.

[9]  J. Forrest,et al.  Using Mw Dependence of Surface Dynamics of Glassy Polymers to Probe the Length Scale of Free-Surface Mobility , 2019, 1909.01835.

[10]  Lian Yu,et al.  Effect of molecular size and hydrogen bonding on three surface-facilitated processes in molecular glasses: Surface diffusion, surface crystal growth, and formation of stable glasses by vapor deposition. , 2019, The Journal of chemical physics.

[11]  Jui-Hsiang Hung,et al.  Temperature-Independent Rescaling of the Local Activation Barrier Drives Free Surface Nanoconfinement Effects on Segmental-Scale Translational Dynamics near Tg. , 2018, ACS macro letters.

[12]  A. Sokolov,et al.  Surprising Temperature Scaling of Viscoelastic Properties in Polymers , 2018, Macromolecules.

[13]  B. Zhang,et al.  Atomic structure and dynamics properties of Cu50Zr50 films , 2018 .

[14]  M. Ediger Perspective: Highly stable vapor-deposited glasses. , 2017, The Journal of chemical physics.

[15]  Lian Yu,et al.  Fast Surface Diffusion and Crystallization of Amorphous Griseofulvin. , 2017, The journal of physical chemistry. B.

[16]  Isabella Gallino,et al.  On the Fragility of Bulk Metallic Glass Forming Liquids , 2017, Entropy.

[17]  S. Milner,et al.  Short-Time Dynamics Reveals Tg Suppression in Simulated Polystyrene Thin Films , 2017 .

[18]  Wence Wang,et al.  Quantitative explanation of the enhancement of surface mobility of the metallic glass Pd40Cu30Ni10P20 by the Coupling Model , 2017 .

[19]  C. Schick,et al.  Vapor-deposited alcohol glasses reveal a wide range of kinetic stability. , 2016, The Journal of chemical physics.

[20]  Wei Zhang,et al.  Surface diffusion and surface crystal growth of tris-naphthyl benzene glasses , 2016 .

[21]  Lian Yu,et al.  Hydrogen Bonding Slows Down Surface Diffusion of Molecular Glasses. , 2016, The journal of physical chemistry. B.

[22]  Lian Yu Surface mobility of molecular glasses and its importance in physical stability. , 2016, Advanced drug delivery reviews.

[23]  Wei Zhang,et al.  Surface Diffusion of Polymer Glasses , 2016 .

[24]  K. Schweizer,et al.  Theory of activated glassy relaxation, mobility gradients, surface diffusion, and vitrification in free standing thin films. , 2015, The Journal of chemical physics.

[25]  W. Wang,et al.  High surface mobility and fast surface enhanced crystallization of metallic glass , 2015 .

[26]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[27]  Zumin Wang,et al.  Concentration-dependent self-diffusion coefficients in amorphous Si1−xGex solid solutions: An interdiffusion study , 2015 .

[28]  Lian Yu,et al.  Fast surface diffusion of amorphous o-terphenyl and its competition with viscous flow in surface evolution. , 2015, The journal of physical chemistry. B.

[29]  Andrew J. Dunleavy,et al.  Strong geometric frustration in model glassformers , 2014, 1407.5787.

[30]  P. Debenedetti,et al.  The effect of substrate on thermodynamic and kinetic anisotropies in atomic thin films. , 2014, The Journal of chemical physics.

[31]  J. A. Forrest,et al.  A Direct Quantitative Measure of Surface Mobility in a Glassy Polymer , 2014, Science.

[32]  K. Samwer,et al.  Ultrastable Metallic Glass , 2013, Advanced materials.

[33]  Lian Yu,et al.  Surface self-diffusion of organic glasses. , 2013, The journal of physical chemistry. A.

[34]  Marc J. Assael,et al.  Reference Data for the Density and Viscosity of Liquid Cadmium, Cobalt, Gallium, Indium, Mercury, Silicon, Thallium, and Zinc , 2012 .

[35]  Edgar Dutra Zanotto,et al.  Dynamic processes in a silicate liquid from above melting to below the glass transition. , 2011, The Journal of chemical physics.

[36]  M. Ediger,et al.  Self-diffusion of the amorphous pharmaceutical indomethacin near Tg , 2011 .

[37]  J. D. de Pablo,et al.  Evolution of glassy gratings with variable aspect ratios under surface diffusion. , 2011, The Journal of chemical physics.

[38]  J. Málek,et al.  Viscosity of selenium melt , 2010 .

[39]  Edgar Dutra Zanotto,et al.  Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? , 2010, The Journal of chemical physics.

[40]  Chi-Hang Lam,et al.  Glass Transition Dynamics and Surface Layer Mobility in Unentangled Polystyrene Films , 2010, Science.

[41]  P. Nealey,et al.  Mechanical properties of antiplasticized polymer nanostructures , 2010 .

[42]  R. McMahon,et al.  Self-diffusion of supercooled tris-naphthylbenzene. , 2009, The journal of physical chemistry. B.

[43]  P. Wolynes,et al.  On the surface of glasses. , 2008, The Journal of chemical physics.

[44]  Robert J. McMahon,et al.  Organic Glasses with Exceptional Thermodynamic and Kinetic Stability , 2007, Science.

[45]  R. Faller,et al.  A comparative molecular simulation study of the glass former ortho-terphenyl in bulk and freestanding films. , 2006, The Journal of chemical physics.

[46]  M. Ashby,et al.  Metallic glasses as structural materials , 2006 .

[47]  Marie K. Mapes,et al.  Self-diffusion of supercooled o-terphenyl near the glass transition temperature. , 2006, The journal of physical chemistry. B.

[48]  S. Hara,et al.  Surface energy, stress and structure of well-relaxed amorphous silicon: A combination approach of ab initio and classical molecular dynamics , 2005 .

[49]  Juan J de Pablo,et al.  Local dynamic mechanical properties in model free-standing polymer thin films. , 2005, The Journal of chemical physics.

[50]  C. R. Miranda,et al.  Transitions between disordered phases in supercooled liquid silicon. , 2004, The Journal of chemical physics.

[51]  E. Lavernia,et al.  Viscous flow of the Pd43Ni10Cu27P20 bulk metallic glass-forming liquid , 2004 .

[52]  O. Urakawa,et al.  Self-diffusion and viscosity of low molecular weight polystyrene over a wide temperature range , 2004 .

[53]  Srikanth Sastry,et al.  Liquid–liquid phase transition in supercooled silicon , 2003, Nature materials.

[54]  C. Angell,et al.  A thermodynamic connection to the fragility of glass-forming liquids , 2001, Nature.

[55]  K. Binder,et al.  Structure and dynamics of amorphous silica surfaces , 2000, cond-mat/0011322.

[56]  M D Ediger,et al.  Spatially heterogeneous dynamics in supercooled liquids. , 2003, Annual review of physical chemistry.

[57]  K. Schröter,et al.  Viscosity and shear response at the dynamic glass transition of glycerol , 2000 .

[58]  J. Sallese,et al.  Modeling of the depletion of the amorphous-silicon surface during hemispherical grained silicon formation , 2000 .

[59]  J. Fornazero,et al.  La viscosité du maltitolThe viscosity of maltitol , 1999 .

[60]  P. Sanders,et al.  Self-diffusivity of liquid silicon measured by pulsed laser melting , 1999 .

[61]  A. Inoue,et al.  Glass transition behavior and viscous flow working of Pd40Cu30Ni10P20 amorphous alloy , 1999 .

[62]  W. Kob Computer simulations of supercooled liquids and glasses , 1998, cond-mat/9809268.

[63]  Ranko Richert,et al.  Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy , 1998 .

[64]  D. Dingwell,et al.  Parametrization of viscosity-temperature relations of aluminosilicate melts , 1996 .

[65]  C. Angell,et al.  Formation of Glasses from Liquids and Biopolymers , 1995, Science.

[66]  T. Tatsumi,et al.  Growth kinetics of Si hemispherical grains on clean amorphous‐Si surfaces , 1993 .

[67]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[68]  C. Angell,et al.  One- and two-step calorimetric studies of crystallization kinetics in simple ionic glass-forming liquids. 1. Calcium nitrate-potassium nitrate system , 1991 .

[69]  R. Gomer Diffusion of adsorbates on metal surfaces , 1990 .

[70]  A. Navrotsky,et al.  Diffraction Studies of a Highly Metastable Form of Amorphous Silica , 1987 .

[71]  G. Brebec,et al.  Diffusion du silicium dans la silice amorphe , 1980 .

[72]  Donald R Uhlmann,et al.  Viscous flow in simple organic liquids , 1972 .

[73]  P. B. Macedo,et al.  Inadequacies of Viscosity Theories for a Vitreous KNO3‐Ca(NO3)2 Melt , 1971 .