Covariance matrix adaptation evolution strategy based design of fixed structure robust H∞ loop shaping controller

Design of fixed structure H∞ loop shaping controller using CMA-ES.Integral Time Absolute Error performance requirement is included as a constraint.?c-constraint relaxation method is incorporated to CMA-ES for handling the constraint.Flexibility to fix the controller structure in H∞ loop shaping controller design.The higher order controller implementation difficulties are also discussed.Statistical results of CMA-ES, non-smooth and Heuristic Kalman Algorithm are analyzed. This paper proposes the application of Covariance Matrix Adaptation Evolution Strategy (CMA-ES) in fixed structure H∞ loop shaping controller design. Integral Time Absolute Error (ITAE) performance requirement is incorporated as a constraint with an objective of maximization of stability margin in the fixed structure H∞ loop shaping controller design problem. Pneumatic servo system, separating tower process and F18 fighter aircraft system are considered as test systems. The CMA-ES designed fixed structure H∞ loop-shaping controller is compared with the traditional H∞ loop shaping controller, non-smooth optimization and Heuristic Kalman Algorithm (HKA) based fixed structure H∞ loop shaping controllers in terms of stability margin. 20% perturbation in the nominal plant is used to validate the robustness of the CMA-ES designed H∞ loop shaping controller. The effect of Finite Word Length (FWL) is considered to show the implementation difficulties of controller in digital processors. Simulation results demonstrated that CMA-ES based fixed structure H∞ loop shaping controller is suitable for real time implementation with good robust stability and performance.

[1]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[2]  P. Apkarian,et al.  Fixed‐order H∞ control design via a partially augmented Lagrangian method , 2003 .

[3]  Somyot Kaitwanidvilai,et al.  Robust loop shaping–fuzzy gain scheduling control of a servo-pneumatic system using particle swarm optimization approach , 2011 .

[4]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[5]  S. O. Reza Moheimani,et al.  A robust loop-shaping approach to fast and accurate nanopositioning , 2013 .

[6]  Masami Saeki,et al.  Fixed structure PID controller design for standard Hinfinity control problem , 2006, Autom..

[7]  Rafal P. Jastrzebski,et al.  H∞ control of active magnetic suspension , 2010 .

[8]  R. Y. Chiang,et al.  H-infinity synthesis using a bilinear pole shifting transform , 1992 .

[9]  Nand Kishor,et al.  Robust H-infinite loop shaping controller based on hybrid PSO and harmonic search for frequency regulation in hybrid distributed generation system , 2014 .

[10]  E. M. Kasenally,et al.  Closed formulae for a parametric mixed sensitivity problem , 1989 .

[11]  Richard J. Duro,et al.  Evolutionary algorithm characterization in real parameter optimization problems , 2013, Appl. Soft Comput..

[12]  André Desbiens,et al.  Mu-synthesis of robust decentralised PI controllers , 1999 .

[13]  John C. Doyle,et al.  Guaranteed margins for LQG regulators , 1978 .

[14]  Nand Kishor,et al.  Robust H-infinity load frequency control in hybrid distributed generation system , 2013 .

[15]  Keith Glover,et al.  Pole/zero cancellations in the general H ∞ problem with reference to a two block design , 1990 .

[16]  Bor-Sen Chen,et al.  A structure-specified H∞ optimal control design for practical applications: a genetic approach , 1998, IEEE Trans. Control. Syst. Technol..

[17]  Somyot Kaitwanidvilai,et al.  GA Based Fixed Structure H-Infinite Loop Shaping Controller for a Buck-Boost Converter , 2008, Eng. Lett..

[19]  S. Baskar,et al.  Covariance matrix adaptation evolution strategy based design of centralized PID controller , 2010, Expert Syst. Appl..

[20]  S. Baskar,et al.  Modified parameter optimization of distribution transformer design using covariance matrix adaptation evolution strategy , 2014 .

[21]  Keith Glover,et al.  Development of a Robust Flight Control Law for a VSTOL Aircraft , 1992 .

[22]  Kasthurirangan Gopalakrishnan,et al.  Co-variance matrix adaptation evolution strategy for pavement backcalculation , 2010 .

[23]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[24]  Keith Glover,et al.  A loop-shaping design procedure using H/sub infinity / synthesis , 1992 .

[25]  Pierre Apkarian,et al.  Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..

[26]  Patrick Lyonnet,et al.  Robust PID controller tuning based on the heuristic Kalman algorithm , 2009, Autom..

[27]  Bijay Ketan Panigrahi,et al.  Energy and spinning reserve scheduling for a wind-thermal power system using CMA-ES with mean learning technique , 2013 .

[28]  Tetsuyuki Takahama,et al.  Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[29]  Anne Auger,et al.  Impacts of invariance in search: When CMA-ES and PSO face ill-conditioned and non-separable problems , 2011, Appl. Soft Comput..

[30]  David Rees,et al.  Industrial Digital Control Systems , 1988 .

[31]  Petros Koumoutsakos,et al.  A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.

[32]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Tutorial , 2016, ArXiv.

[33]  Mohsen Kalantar,et al.  Multi types DG expansion dynamic planning in distribution system under stochastic conditions using Covariance Matrix Adaptation Evolutionary Strategy and Monte-Carlo simulation , 2014 .

[34]  Huibert Kwakernaak,et al.  Optimal low-sensitivity linear feedback systems , 1969, Autom..

[35]  James F. Whidborne,et al.  Kolmogorov-Chaitin complexity of digital controller implementations , 2006, Int. J. Autom. Comput..

[36]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[37]  Somyot Kaitwanidvilai,et al.  Position control of a pneumatic servo system by genetic algorithm based fixed-structure robust H/sub /spl infin// loop shaping control , 2004, 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004.

[38]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[39]  Toshiharu Sugie,et al.  Fixed-structure H∞ controller synthesis: A meta-heuristic approach using simple constrained particle swarm optimization , 2009, Autom..