Ions motion algorithm for solving optimization problems

A new meta-heuristic called IMO inspired by ions motion is proposed.The IMO algorithm is benchmarked on well-known test functions.The results show the superiority and potential of IMO. This paper proposes a novel optimization algorithm inspired by the ions motion in nature. In fact, the proposed algorithm mimics the attraction and repulsion of anions and cations to perform optimization. The proposed algorithm is designed in such a way to have the least tuning parameters, low computational complexity, fast convergence, and high local optima avoidance. The performance of this algorithm is benchmarked on 10 standard test functions and compared to four well-known algorithms in the literature. The results demonstrate that the proposed algorithm is able to show very competitive results and has merits in solving challenging optimization problems.

[1]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[2]  Xin-She Yang,et al.  Cuckoo Search via Lévy flights , 2009, 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC).

[3]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[4]  Russell C. Eberhart,et al.  A discrete binary version of the particle swarm algorithm , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[5]  Abdolreza Hatamlou,et al.  Heart: a novel optimization algorithm for cluster analysis , 2014, Progress in Artificial Intelligence.

[6]  Minghao Yin,et al.  Self Adaptive Artificial Bee Colony for Global Numerical Optimization , 2012 .

[7]  M. Silberberg,et al.  Principles of general chemistry , 2006 .

[8]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[9]  Q. Henry Wu,et al.  MCPSO: A multi-swarm cooperative particle swarm optimizer , 2007, Appl. Math. Comput..

[10]  Kathryn A. Dowsland,et al.  Simulated Annealing , 1989, Encyclopedia of GIS.

[11]  Ibrahim Eksin,et al.  A new optimization method: Big Bang-Big Crunch , 2006, Adv. Eng. Softw..

[12]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[13]  Dervis Karaboga,et al.  A comparative study of Artificial Bee Colony algorithm , 2009, Appl. Math. Comput..

[14]  Hossein Nezamabadi-pour,et al.  BGSA: binary gravitational search algorithm , 2010, Natural Computing.

[15]  Xin-She Yang,et al.  Firefly algorithm, stochastic test functions and design optimisation , 2010, Int. J. Bio Inspired Comput..

[16]  J. Galletly An Overview of Genetic Algorithms , 1992 .

[17]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[18]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[19]  Dervis Karaboga,et al.  A modified Artificial Bee Colony algorithm for real-parameter optimization , 2012, Inf. Sci..

[20]  Xin-She Yang,et al.  A literature survey of benchmark functions for global optimisation problems , 2013, Int. J. Math. Model. Numer. Optimisation.

[21]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[22]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[23]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[24]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[25]  Andries Petrus Engelbrecht,et al.  Empirical analysis of self-adaptive differential evolution , 2007, Eur. J. Oper. Res..

[26]  David Beasley,et al.  An overview of genetic algorithms: Part 1 , 1993 .

[27]  Debasish Ghose,et al.  Glowworm swarm optimisation: a new method for optimising multi-modal functions , 2009, Int. J. Comput. Intell. Stud..

[28]  Cliff T. Ragsdale,et al.  Modified differential evolution: a greedy random strategy for genetic recombination , 2005 .

[29]  Anvar Bahrampour,et al.  Dynamic Diversity Enhancement in Particle Swarm Optimization (DDEPSO) Algorithm for Preventing from Premature Convergence , 2013 .

[30]  D. Karaboga,et al.  On the performance of artificial bee colony (ABC) algorithm , 2008, Appl. Soft Comput..

[31]  René Thomsen,et al.  A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[32]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[33]  Abdolreza Hatamlou,et al.  Black hole: A new heuristic optimization approach for data clustering , 2013, Inf. Sci..

[34]  A. Kaveh,et al.  A new meta-heuristic method: Ray Optimization , 2012 .

[35]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[36]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[37]  Thomas Stützle,et al.  Ant colony optimization: artificial ants as a computational intelligence technique , 2006 .

[38]  Emile H. L. Aarts,et al.  Performance of the simulated annealing algorithm , 1987 .

[39]  David B. Fogel What is evolutionary computation , 1995 .

[40]  Bilal Alatas,et al.  ACROA: Artificial Chemical Reaction Optimization Algorithm for global optimization , 2011, Expert Syst. Appl..

[41]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[42]  Rajasvaran Logeswaran,et al.  KGMO: A swarm optimization algorithm based on the kinetic energy of gas molecules , 2014, Inf. Sci..

[43]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[44]  Marte A. Ramírez-Ortegón,et al.  An optimization algorithm inspired by the States of Matter that improves the balance between exploration and exploitation , 2013, Applied Intelligence.

[45]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[46]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[47]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[48]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[49]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.