A stochastic p-adic model of the capillary flow in porous random medium

Abstract We develop the p-adic model of propagation of fluids (e.g., oil or water) in capillary networks in a porous random medium. The hierarchic structure of a system of capillaries is mathematically modeled by endowing trees of capillaries with the structure of an ultrametric space. Considerations are restricted to the case of idealized networks represented by homogeneous p-trees with p branches leaving each vertex, where p >1 is a prime number. Such trees are realized as the fields of p-adic numbers. We introduce and study an inhomogeneous Markov process describing the penetration of fluid into a porous random medium.

[1]  Andrei Khrennikov,et al.  Ultrametrics in the genetic code and the genome , 2017, Appl. Math. Comput..

[2]  Fionn Murtagh,et al.  On Ultrametric Algorithmic Information , 2007, Comput. J..

[3]  Carlo Cattani,et al.  Fractal Patterns in Prime Numbers Distribution , 2010, ICCSA.

[4]  Fionn Murtagh,et al.  The new science of complex systems through ultrametric analysis: Application to search and discovery, to narrative and to thinking , 2013 .

[5]  K. Oleschko,et al.  Weathering: Toward a Fractal Quantifying , 2004 .

[6]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[7]  Anatoly N. Kochubei,et al.  Pseudo-differential equations and stochastics over non-archimedean fields , 2001 .

[8]  Andrei Khrennikov,et al.  Application of p-Adic Wavelets to Model Reaction–Diffusion Dynamics in Random Porous Media , 2016 .

[9]  W. A. Zuniga-Galindo Fundamental Solutions of Pseudo-Differential Operators over p-Adic Fields. , 2003 .

[10]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[11]  Gabor Korvin,et al.  Fractal radar scattering from soil. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  S.V.Kozyrev p-Adic pseudodifferential operators and p-adic wavelets , 2003, math-ph/0303045.

[13]  Björn Böttcher Feller Evolution Systems: Generators and Approximation , 2014 .

[14]  W. A. Z'uniga-Galindo,et al.  Nonlocal operators, parabolic-type equations, and ultrametric random walks , 2013, 1308.5013.

[15]  W. A. Zúñiga-Galindo Parabolic Equations and Markov Processes Over p-Adic Fields , 2006 .

[16]  Igor Volovich,et al.  On the p-adic summability of the anharmonic oscillator , 1988 .

[17]  A. Khrennikov,et al.  The Primes are Everywhere, but Nowhere… , 2017 .

[18]  Andrei Khrennikov,et al.  p-Adic Valued Distributions in Mathematical Physics , 1994 .

[19]  Andrei Khrennikov,et al.  Modeling Fluid's Dynamics with Master Equations in Ultrametric Spaces Representing the Treelike Structure of Capillary Networks , 2016, Entropy.

[20]  G. Toulouse,et al.  Ultrametricity for physicists , 1986 .

[21]  Farrukh Mukhamedov A Dynamical System Approach to Phase Transitions for p-Adic Potts Model on the Cayley Tree of Order Two , 2012 .

[22]  Emanuel Guariglia,et al.  Fractional derivative of the riemann zeta function , 2017 .

[23]  Meng Sun,et al.  A New Feature Extraction Method Based on EEMD and Multi-Scale Fuzzy Entropy for Motor Bearing , 2016, Entropy.

[24]  S. E. Kuznetsov Nonhomogeneous Markov processes , 1984 .

[25]  Time-inhomogeneous stochastic processes on the {$p$}-adic number field , 2003 .

[26]  S. V. Kozyrev,et al.  p-Adic mathematical physics: the first 30 years , 2017, 1705.04758.

[27]  Milivoje M. Kostic Entropy Generation Results of Convenience But without Purposeful Analysis and Due Comprehension - Guidelines for Authors , 2016, Entropy.

[28]  Branko Dragovich Adelic Harmonic Oscillator , 1995 .

[29]  Jintu Fan,et al.  Treelike networks accelerating capillary flow. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  I. V. Volovich,et al.  p-adic space-time and string theory , 1987 .

[31]  V A Avetisov,et al.  p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes , 2002 .

[32]  Klaudia Oleschko,et al.  Applications of p-adics to geophysics: Linear and quasilinear diffusion of water-in-oil and oil-in-water emulsions , 2017 .

[33]  Alain Escassut,et al.  Ultrametric Banach Algebras , 2003 .

[34]  Sergei Kozyrev,et al.  Wavelet analysis as a p-adic spectral analysis , 2008 .

[35]  Emanuel Guariglia,et al.  Entropy and Fractal Antennas , 2016, Entropy.

[36]  A. Robert,et al.  A Course in p-adic Analysis , 2000 .

[37]  S. Albeverio,et al.  Multidimensional ultrametric pseudodifferential equations , 2007, 0708.2074.

[38]  Iosif Ilitch Gikhman,et al.  Introduction to the theory of random processes , 1969 .

[39]  Jintu Fan,et al.  The fastest capillary penetration of power-law fluids , 2015 .

[40]  Rosario N. Mantegna,et al.  Book Review: An Introduction to Econophysics, Correlations, and Complexity in Finance, N. Rosario, H. Mantegna, and H. E. Stanley, Cambridge University Press, Cambridge, 2000. , 2000 .