The FENE Model for Viscoelastic Thin Film Flows

In this article, we are interested in the behavior of the FENE (Finitely Extensible Non-Linear Elastic), a constitutive relation within an almost shear flow. As this relation results from a microscopic analysis of the polymer chains, the study presented here is based on new results from the Fokker-Planck equation. Thin flows are generally considered like almost one-dimensional flows and almost shear flows. The study of the FENE model makes it possible to understand which could be the dominant terms in the equations coupling this rheology (the FENE model) and the hydrodynamic (via the conservation equations). Some possible examples of applications are given at the end of this article, for example, in the field of lubrication, the phenomena of boundary layers, the industry of the nanotechnology, biology or Shallow-Water equations.

[1]  Francesco Petruccione,et al.  A Consistent Numerical Analysis of the Tube Flow of Dilute Polymer Solutions , 1988 .

[2]  Francesco Petruccione,et al.  The flow of dilute polymer solutions in confined geometries: a consistent numerical approach , 1987 .

[3]  Pierre Degond,et al.  Viscoelastic Fluid Models Derived from Kinetic Equations for Polymers , 2002, SIAM J. Appl. Math..

[4]  Michael D. Graham,et al.  A mechanism for oscillatory instability in viscoelastic cross-slot flow , 2007, Journal of Fluid Mechanics.

[5]  O. Reynolds IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil , 1886, Philosophical Transactions of the Royal Society of London.

[6]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[7]  A. Szeri A deformation tensor model for nonlinear rheology of FENE polymer solutions , 2000 .

[8]  Benjamin Jourdain,et al.  Existence of solution for a micro–macro model of polymeric fluid: the FENE model , 2004 .

[9]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[10]  Haim Brezis,et al.  Remarks on the Euler equation , 1974 .

[11]  Vincent Legat,et al.  On the hysteretic behaviour of dilute polymer solutions in relaxation following extensional flow , 1999 .

[12]  B. Desjardins,et al.  Ekman boundary layers in rotating fluids , 2002 .

[13]  S. Edwards,et al.  The Theory of Polymer Dynamics , 1986 .

[14]  Fjh Frank Gijsen Modeling of wall shear stress in large arteries , 1998 .

[15]  Jacques Simeon,et al.  Compact Sets in the Space L~(O, , 2005 .

[16]  David O. Olagunju A self-similar solution for forced convection boundary layer flow of a FENE-P fluid , 2006, Appl. Math. Lett..

[17]  J. Saut,et al.  Existence results for the flow of viscoelastic fluids with a differential constitutive law , 1990 .

[18]  J. Simon Compact sets in the spaceLp(O,T; B) , 1986 .

[19]  Vincent Legat,et al.  The FENE-L and FENE-LS closure approximations to the kinetic theory of finitely extensible dumbbells , 1999 .

[20]  Hans Christian Öttinger,et al.  A detailed comparison of various FENE dumbbell models , 1997 .

[21]  Michael Renardy,et al.  An existence theorem for model equations resulting from kinetic theories of polymer solutions , 1991 .

[22]  R. Keunings MICRO-MACRO METHODS FOR THE MULTISCALE SIMULATION OF VISCOELASTIC FLOW USING MOLECULAR MODELS OF KINETIC THEORY , 2004 .

[23]  Roland Keunings,et al.  On the Peterlin approximation for finitely extensible dumbbells , 1997 .

[24]  D. W. Beard,et al.  Elastico-viscous boundary-layer flows I. Two-dimensional flow near a stagnation point , 1964, Mathematical Proceedings of the Cambridge Philosophical Society.

[25]  E. Süli,et al.  Existence of global weak solutions for some polymeric flow models , 2005 .

[26]  J. Tichy Non-Newtonian Lubrication With the Convected Maxwell Model , 1996 .

[27]  J. Leray,et al.  Topologie et équations fonctionnelles , 1934 .

[28]  David O. Olagunju The Falkner–Skan flow of a viscoelastic fluid , 2006 .

[29]  Guy Bayada,et al.  The transition between the Stokes equations and the Reynolds equation: A mathematical proof , 1986 .

[30]  Laurent Chupin The FENE viscoelastic model and thin film flows , 2009 .

[31]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[32]  Nader Masmoudi,et al.  Well‐posedness for the FENE dumbbell model of polymeric flows , 2008 .

[33]  H. Fernholz Boundary Layer Theory , 2001 .

[34]  Jean-Marc Sac-Epee,et al.  On a wide class of nonlinear models for non-Newtonian fluids with mixed boundary conditions in thin domains , 2005 .

[35]  Pingwen Zhang,et al.  Local Existence for the FENE-Dumbbell Model of Polymeric Fluids , 2004 .

[36]  Hailiang Liu,et al.  Boundary Conditions for the Microscopic FENE Models , 2008, SIAM J. Appl. Math..

[37]  Alexei Lozinski,et al.  Spectral methods for kinetic theory models of viscoelastic fluids , 2003 .

[38]  G. Métivier Comportement asymptotique des valeurs propres d'opérateurs elliptiques dégénérés , 1975 .

[39]  Pingwen Zhang,et al.  Local Existence for the Dumbbell Model of Polymeric Fluids , 2004 .

[40]  Hans Christian Öttinger,et al.  Stochastic Processes in Polymeric Fluids , 1996 .

[41]  Kumbakonam R. Rajagopal,et al.  Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity , 1995 .

[42]  Mehrdad Massoudi,et al.  Boundary layer flow of a second grade fluid with variable heat flux at the wall , 2003, Appl. Math. Comput..

[43]  N. Phan-Thien,et al.  Fluid Mechanics of Viscoelasticity: General Principles, Constitutive Modelling, Analytical and Numerical Techniques , 2011 .

[44]  Daniel D. Joseph,et al.  Fluid Dynamics Of Viscoelastic Liquids , 1990 .

[45]  Laurent Chupin,et al.  Viscoelastic fluids in thin domains: A mathematical proof , 2009, Asymptot. Anal..