Min–max control using parametric approximate dynamic programming

Abstract This study presents a computationally efficient approximate dynamic programming approach to control uncertain linear systems based on a min–max control formulation. The optimal cost-to-go function, which prescribes an optimal control policy, is estimated using piecewise parametric quadratic approximation. The approach requires simulation or operational data only at the bounds of additive disturbances or polyhedral uncertain parameters. This strategy significantly reduces the computational burden associated with dynamic programming and is not limited to a particular form of performance criterion as in previous approaches.

[1]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[2]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[3]  Manfred Morari,et al.  Robust Model Predictive Control , 1987, 1987 American Control Conference.

[4]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[5]  J. M. Lee,et al.  Parametric Approximation of Piecewise Quadratic Value Functions for the Control of Complex Systems , 2008 .

[6]  Manfred Morari,et al.  Robust constrained model predictive control using linear matrix inequalities , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[7]  Moritz Diehl,et al.  Robust dynamic programming for min-max model predictive control of constrained uncertain systems , 2004, IEEE Transactions on Automatic Control.

[8]  Jay H. Lee,et al.  Choice of approximator and design of penalty function for an approximate dynamic programming based control approach , 2006 .

[9]  Alberto Bemporad,et al.  Min-max control of constrained uncertain discrete-time linear systems , 2003, IEEE Trans. Autom. Control..

[10]  Sameer Ralhan,et al.  Robust control of stable linear systems with continuous uncertainty , 2000 .

[11]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[12]  M. Morari,et al.  Geometric Algorithm for Multiparametric Linear Programming , 2003 .

[13]  Mayuresh V. Kothare,et al.  An e!cient o"-line formulation of robust model predictive control using linear matrix inequalities (cid:1) , 2003 .

[14]  Jay H. Lee,et al.  Approximate dynamic programming based approach to process control and scheduling , 2006, Comput. Chem. Eng..

[15]  S. Joe Qin,et al.  A survey of industrial model predictive control technology , 2003 .

[16]  D. Mayne,et al.  Min-max feedback model predictive control for constrained linear systems , 1998, IEEE Trans. Autom. Control..

[17]  Eduardo F. Camacho,et al.  Control of a pilot plant using QP based min-max predictive control , 2009 .

[18]  T. Badgwell Robust model predictive control of stable linear systems , 1997 .

[19]  Zhenghong Yu,et al.  Worst-case formulations of model predictive control for systems with bounded parameters , 1997, Autom..

[20]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[21]  Moritz Diehl,et al.  Approximate robust dynamic programming and robustly stable MPC , 2006, Autom..

[22]  Manfred Morari,et al.  THE DOMINANT TIME CONSTANT FOR DISTILLATION COLUMNS , 1987 .

[23]  András Lörincz,et al.  Reinforcement Learning with Linear Function Approximation and LQ control Converges , 2003, ArXiv.

[24]  Benjamin Van Roy,et al.  The Linear Programming Approach to Approximate Dynamic Programming , 2003, Oper. Res..

[25]  H. Witsenhausen A minimax control problem for sampled linear systems , 1968 .