Dynamic analysis of unbounded domains by a reduced set of base functions

The scaled boundary finite-element method, a semi-analytical method based on finite element technology, is well suited to model unbounded domains. Only the boundary is discretized. No fundamental solution is necessary. General anisotropic material is analyzed without any increase in computational effort. The goal of this paper is to increase the computational efficiency of the scaled boundary finite-element analysis of large-scale problems. A reduced set of weighted block-orthogonal base functions is introduced. The scaled boundary finite-element equation is reformulated in generalized coordinates reducing the number of degrees of freedom on boundary. The solution procedure in frequency domain is presented. To enforce the radiation condition at infinity, an asymptotic expansion for displacement at high frequency is developed. Numerical examples have demonstrated that the computational time is reduced by more than an order of magnitude.

[1]  Thomas Hagstrom,et al.  A formulation of asymptotic and exact boundary conditions using local operators , 1998 .

[2]  J. Wolf,et al.  Finite-element modelling of unbounded media , 1996 .

[3]  John Lysmer,et al.  Lumped mass method for Rayleigh waves , 1970, Bulletin of the Seismological Society of America.

[4]  J. Wolf,et al.  Doubly asymptotic multi-directional transmitting boundary for dynamic unbounded medium-structure-interaction analysis , 1995 .

[5]  Warwick D. Smith A nonreflecting plane boundary for wave propagation problems , 1974 .

[6]  Chuhan Zhang,et al.  A coupling procedure of FE and SBFE for soil–structure interaction in the time domain , 2004 .

[7]  G. A. Watson A treatise on the theory of Bessel functions , 1944 .

[8]  Z. Liao,et al.  A transmitting boundary for the numerical simulation of elastic wave propagation , 1984 .

[9]  S. Krenk Unified formulation of radiation conditions for the wave equation , 2002 .

[10]  George Gazetas,et al.  Analysis of machine foundation vibrations: state of the art , 1983 .

[11]  L. Kellezi Local transmitting boundaries for transient elastic analysis , 2000 .

[12]  M. Geneş,et al.  Dynamic soil–structure interaction analysis of layered unbounded media via a coupled finite element/boundary element/scaled boundary finite element model , 2005 .

[13]  Chongmin Song A matrix function solution for the scaled boundary finite-element equation in statics , 2004 .

[14]  Xiong Zhang,et al.  Three-dimensional dynamic soil-structure interaction analysis in the time domain , 1999 .

[15]  R.K.N.D. Rajapakse,et al.  Dynamics of rigid strip foundations embedded in orthotropic elastic soils , 1991 .

[16]  J. Domínguez Boundary elements in dynamics , 1993 .

[17]  W. Wasow Asymptotic expansions for ordinary differential equations , 1965 .

[18]  S. Orszag,et al.  Approximation of radiation boundary conditions , 1981 .

[19]  J. Wolf,et al.  Consistent infinitesimal finite-element cell method in frequency domain , 1996 .

[20]  P. Ruge,et al.  Time‐domain analysis of unbounded media using mixed‐variable formulations , 2001 .

[21]  D. E. Amos Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order , 1986, TOMS.

[22]  Dimitri E. Beskos,et al.  Boundary Element Methods in Dynamic Analysis , 1987 .

[23]  Dimitri E. Beskos,et al.  Boundary Element Methods in Dynamic Analysis: Part II (1986-1996) , 1997 .

[24]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[25]  E. Kausel Dynamic point sources in laminated media via the thin-layer method , 1999 .

[26]  J. Sochacki Absorbing boundary conditions for the elastic wave equations , 1988 .

[27]  Eduardo Kausel,et al.  Local transmitting boundaries , 1988 .

[28]  J. L. Wegner,et al.  Free‐vibration analysis of a three‐dimensional soil–structure system , 2001 .

[29]  J. Lysmer,et al.  Finite Dynamic Model for Infinite Media , 1969 .

[30]  J. Wolf Dynamic soil-structure interaction , 1985 .

[31]  Dan Givoli,et al.  Recent advances in the DtN FE Method , 1999 .

[32]  John P. Wolf,et al.  The scaled boundary finite-element method: analytical solution in frequency domain , 1998 .

[33]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[34]  John P. Wolf,et al.  A comparison of time-domain transmitting boundaries , 1986 .

[35]  R. Astley Infinite elements for wave problems: a review of current formulations and an assessment of accuracy , 2000 .

[36]  Chongmin Song,et al.  The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—for elastodynamics , 1997 .

[37]  Philip Underwood,et al.  Doubly asymptotic, boundary-element analysis of dynamic soil-structure interaction. Topical report 1 June 1975--31 March 1978 , 1978 .

[38]  J. Wolf Soil-structure-interaction analysis in time domain , 1988 .

[39]  M. Biot Theory of Propagation of Elastic Waves in a Fluid-Saturated Porous Solid. II. Higher Frequency Range , 1956 .

[40]  Marcus J. Grote,et al.  Exact Nonreflecting Boundary Condition For Elastic Waves , 2000, SIAM J. Appl. Math..

[41]  Nils-Erik Wiberg,et al.  Wave Propagation Related to High-Speed Train - a Scaled Boundary FE-approach for Unbounded Domains , 2002 .

[42]  R. G. Keys Absorbing boundary conditions for acoustic media , 1985 .

[43]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[44]  W. S. Hall,et al.  Boundary element methods for soil-structure interaction , 2004 .

[45]  Chongmin Song,et al.  Dynamic stiffness of unbounded medium based on damping-solvent extraction , 1994 .

[46]  Lonny L. Thompson,et al.  Accurate radiation boundary conditions for the two-dimensional wave equation on unbounded domains , 2001 .

[47]  Robert L. Higdon,et al.  Absorbing boundary conditions for acoustic and elastic waves in stratified media , 1992 .

[48]  J. Wolf,et al.  The scaled boundary finite-element method – a primer: derivations , 2000 .