Non-linear extended thermodynamics of real gases with 6 fields

Abstract We establish extended thermodynamics (ET) of real gases with 6 independent fields, i.e., the mass density, the velocity, the temperature and the dynamic pressure, without adopting the near-equilibrium approximation. We prove its compatibility with the universal principles (the entropy principle, the Galilean invariance and the stability), and obtain the symmetric hyperbolic system with respect to the main field. In near-equilibrium we recover the previous results. The correspondence between the ET 6-field theory and Meixner׳s theory of relaxation processes is discovered. The internal variable and the non-equilibrium temperature in Meixner׳s theory are expressed in terms of the quantities of the ET 6-field theory, in particular, the dynamic pressure. As an example, we present the cases of a rarefied polyatomic gas and study the monatomic-gas limit where the system converges to the Euler system of a perfect fluid.

[1]  Takashi Arima,et al.  Monatomic rarefied gas as a singular limit of polyatomic gas in extended thermodynamics , 2013 .

[2]  G. Röpke Nonequilibrium Statistical Physics , 2013 .

[3]  Tommaso Ruggeri,et al.  Hyperbolic Principal Subsystems: Entropy Convexity and Subcharacteristic Conditions , 1997 .

[4]  I-Shih Liu,et al.  Method of Lagrange multipliers for exploitation of the entropy principle , 1972 .

[5]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[6]  T. Ruggeri,et al.  Extended thermodynamics of dense gases , 2012 .

[7]  Takashi Arima,et al.  Effect of the dynamic pressure on the shock wave structure in a rarefied polyatomic gas , 2014 .

[8]  Takashi Arima,et al.  Dispersion relation for sound in rarefied polyatomic gases based on extended thermodynamics , 2013 .

[9]  Wolfgang Muschik,et al.  Thermodynamics with Internal Variables. Part I. General Concepts , 1994 .

[10]  Wolfgang Muschik,et al.  Thermodynamics with Internal Variables. Part II. Applications , 1994 .

[11]  R. Gordon,et al.  Vibrational and Rotational Relaxation , 1968 .

[12]  Jou,et al.  Nonequilibrium temperature versus local-equilibrium temperature. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  T. Ruggeri,et al.  Shock Wave Structure in a Rarefied Polyatomic Gas Based on Extended Thermodynamics , 2014 .

[14]  P. Mazur,et al.  Non-equilibrium thermodynamics, , 1963 .

[15]  Vanishing Shear Viscosity in a Free-Boundary Problem for the Equations of Compressible Fluids , 2000 .

[16]  I. Müller,et al.  Rational Extended Thermodynamics , 1993 .

[17]  Arkadi Berezovski,et al.  Internal Variables and Dynamic Degrees of Freedom , 2006, cond-mat/0612491.

[18]  T. Ruggeri,et al.  On the six-field model of fluids based on extended thermodynamics , 2014 .

[19]  T. Ruggeri,et al.  Recent Developments in Extended Thermodynamics of Dense and Rarefied Polyatomic Gases , 2014 .

[20]  D. Jou,et al.  Temperature in non-equilibrium states: a review of open problems and current proposals , 2003 .

[21]  T. Ruggeri,et al.  Galilean invariance and entropy principle for systems of balance laws , 1989 .

[22]  T. Teichmann,et al.  Introduction to physical gas dynamics , 1965 .

[23]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[24]  T. Ruggeri,et al.  A new method to exploit the Entropy Principle and galilean invariance in the macroscopic approach of Extended Thermodynamics , 2006 .

[25]  Vito Antonio Cimmelli,et al.  Entropy Principle and Recent Results in Non-Equilibrium Theories , 2014, Entropy.

[26]  M. Gurtin,et al.  Thermodynamics with Internal State Variables , 1967 .

[27]  E. Kustova,et al.  Non-Equilibrium Reacting Gas Flows , 2009 .

[28]  H. Gg. Wagner,et al.  Walter G. Vincenti und Charles H. Krüger, Jr.: Introduction to Physical Gas Dynamics. John Wiley & Sons, New York, London, Sidney 1965. 538 Seiten. Preis: 102/— , 1966, Berichte der Bunsengesellschaft für physikalische Chemie.

[29]  A. L. Kuzemsky,et al.  Nonequilibrium Statistical Thermodynamics , 2017 .

[30]  Takashi Arima,et al.  Extended thermodynamics of real gases with dynamic pressure: An extension of Meixnerʼs theory , 2012 .

[31]  T. Ruggeri,et al.  A Study of Linear Waves Based on Extended Thermodynamics for Rarefied Polyatomic Gases , 2014 .

[32]  Takashi Arima,et al.  Thermodynamic theory of the shock wave structure in a rarefied polyatomic gas: beyond the Bethe-Teller theory. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Tommaso Ruggeri,et al.  Main field and convex covariant density for quasi-linear hyperbolic systems : relativistic fluid dynamics , 1981 .

[34]  Maximum entropy principle for rarefied polyatomic gases , 2013 .

[35]  J. Meixner,et al.  Absorption und Dispersion des Schalles in Gasen mit chemisch reagierenden und anregbaren Komponenten. I. Teil , 1943 .

[36]  H. Grad On the kinetic theory of rarefied gases , 1949 .

[37]  I. Müller,et al.  On the Temperature of a Rarefied Gas in Non‐Equilibrium , 1999 .

[38]  Andrea Mentrelli,et al.  Molecular extended thermodynamics of rarefied polyatomic gases and wave velocities for increasing number of moments , 2014 .

[39]  Denis Serre,et al.  Stability of constant equilibrium state for dissipative balance laws system with a convex entropy , 2004 .

[40]  Hermano Frid,et al.  Vanishing Shear Viscosity in the Equations of Compressible Fluids for the Flows with the Cylinder Symmetry , 2000, SIAM J. Math. Anal..

[41]  C. Truesdell,et al.  On the Pressures and the Flux of Energy in a Gas according to Maxwell's Kinetic Theory, II , 1956 .