Modeling accidental-type fluid-structure interaction problems with the SPH method

This paper presents the validation aspects of a unified numerical framework based on SPH formulation and devoted to the modeling of fluid-structure interaction problems involving large motion of the fluid and large deformation with a possible failure of the structure. The fluid domain is modeled according to an updated Lagrangian formulation. The solid domain (3D and shell models) uses the total Lagrangian formulation. The fluid-structure interaction is treated via a unilateral contact algorithm adapted to SPH context. The SPH framework is verified on academic test cases and validated by simulating an experiment involving the reservoir leakage.

[1]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[2]  C. Antoci,et al.  Numerical simulation of fluid-structure interaction by SPH , 2007 .

[3]  T. Belytschko,et al.  Stable particle methods based on Lagrangian kernels , 2004 .

[4]  Wing Kam Liu,et al.  Meshfree and particle methods and their applications , 2002 .

[5]  J. Monaghan,et al.  Solidification using smoothed particle hydrodynamics , 2005 .

[6]  Ted Belytschko,et al.  A unified stability analysis of meshless particle methods , 2000 .

[7]  Vishal Mehra,et al.  High velocity impact of metal sphere on thin metallic plates: A comparative smooth particle hydrodynamics study , 2006, J. Comput. Phys..

[8]  Ted Belytschko,et al.  An introduction to programming the meshless Element F reeGalerkin method , 1998 .

[9]  T. Belytschko,et al.  Analysis of thin shells by the Element-Free Galerkin method , 1996 .

[10]  Mark O. Neal,et al.  Contact‐impact by the pinball algorithm with penalty and Lagrangian methods , 1991 .

[11]  Alain Combescure,et al.  An SPH shell formulation for plasticity and fracture analysis in explicit dynamics , 2008 .

[12]  G. Dilts MOVING-LEAST-SQUARES-PARTICLE HYDRODYNAMICS-I. CONSISTENCY AND STABILITY , 1999 .

[13]  Antonio Huerta,et al.  Stabilized updated Lagrangian corrected SPH for explicit dynamic problems , 2007 .

[14]  L. Libersky,et al.  Smoothed Particle Hydrodynamics: Some recent improvements and applications , 1996 .

[15]  G. C. Everstine,et al.  Coupled finite element/boundary element approach for fluid–structure interaction , 1990 .

[16]  G. R. Johnson,et al.  Incorporation of an SPH option into the EPIC code for a wide range of high velocity impact computations , 1993 .

[17]  Frederic Blom,et al.  A monolithical fluid-structure interaction algorithm applied to the piston problem , 1998 .

[18]  Stefan Turek,et al.  A MONOLITHIC FEM SOLVER FOR AN ALE FORMULATION OF FLUID-STRUCTURE INTERACTION WITH CONFIGURATION FOR NUMERICAL BENCHMARKING , 2006 .

[19]  Alain Combescure,et al.  A robust SPH formulation for solids , 2006 .

[20]  Ted Belytschko,et al.  Overview and applications of the reproducing Kernel Particle methods , 1996 .

[21]  Dongdong Wang,et al.  Locking-free stabilized conforming nodal integration for meshfree Mindlin-Reissner plate formulation , 2004 .

[22]  Qiang Zeng,et al.  An efficient plasticity algorithm for shell elements application to metal forming simulation , 2001 .

[23]  Jong Chull Jo,et al.  3D Modeling of Fluid-Structure Interaction With External Flow Using Coupled LBM and FEM , 2008 .

[24]  Ted Belytschko,et al.  A three-dimensional impact-penetration algorithm with erosion , 1987 .

[25]  P. Meakin,et al.  A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh-Taylor instability , 2005 .

[26]  Charbel Farhat,et al.  Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity , 2006 .

[27]  Antonio Huerta,et al.  New ALE applications in non-linear fast-transient solid dynamics , 1994 .

[28]  Alain Combescure,et al.  Full SPH fluid–shell interaction for leakage simulation in explicit dynamics , 2009 .

[29]  Klaus-Jürgen Bathe,et al.  Finite element analysis of incompressible and compressible fluid flows with free surfaces and structural interactions , 1995 .

[30]  O. G. McGee,et al.  A THREE‐DIMENSIONAL ANALYSIS OF THE SPHEROIDAL AND TOROIDAL ELASTIC VIBRATIONS OF THICK‐WALLED SPHERICAL BODIES OF REVOLUTION , 1997 .

[31]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[32]  Hou Zhang,et al.  Direct and iterative computing of fluid flows fully coupled with structures , 2001 .

[33]  J. Monaghan,et al.  Shock simulation by the particle method SPH , 1983 .

[34]  Young W. Kwon,et al.  3-D Modeling of Fluid-Structure Interaction With External Flow Using Coupled LBM and FEM , 2007 .

[35]  Folco Casadei,et al.  Permanent Fluid-Structure Interaction with Non-Conforming Interfaces in Fast Transient Dynamics. , 2004 .

[36]  R. P. Ingel,et al.  STRESS POINTS FOR TENSION INSTABILITY IN SPH , 1997 .

[37]  J. Monaghan,et al.  SPH elastic dynamics , 2001 .

[38]  Rade Vignjevic,et al.  A contact algorithm for smoothed particle hydrodynamics , 2000 .

[39]  Seiichi Koshizuka,et al.  Fluid-shell structure interaction analysis by coupled particle and finite element method , 2007 .

[40]  Klaus-Jürgen Bathe,et al.  Benchmark problems for incompressible fluid flows with structural interactions , 2007 .