A Region-Growing Based Iso-Surface Extraction Algorithm

In this paper, we propose a new region-growing based iso-surface extraction algorithm that can generate high-quality curvature-adaptive semi-regular meshes, preserve sharp features and will extract all the disjoint components of the iso-surface. More importantly, in this paper, we propose a novel normal consistency constraint that ensures the intersection of the Delaunay sphere of the new triangle and the iso-surface is a topological disk, an important property that makes the new algorithm very robust when dealing with large scale of volumetric datasets of complex topology and geometry.

[1]  Bernd Hamann,et al.  Iso-splatting: a point-based alternative to isosurface visualization , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[2]  J. Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[3]  Paolo Cignoni,et al.  Reconstruction of topologically correct and adaptive trilinear isosurfaces , 2000, Comput. Graph..

[4]  Geoff Wyvill,et al.  Data structure forsoft objects , 1986, The Visual Computer.

[5]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[6]  Adrian Hilton,et al.  Marching triangles: range image fusion for complex object modelling , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[7]  Roberto Scopigno,et al.  A modified look-up table for implicit disambiguation of Marching Cubes , 1994, The Visual Computer.

[8]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[9]  Mario Botsch,et al.  Feature sensitive surface extraction from volume data , 2001, SIGGRAPH.

[10]  Bing-Yu Chen,et al.  Cubical Marching Squares: Adaptive Feature Preserving Surface Extraction from Volume Data , 2005, Comput. Graph. Forum.

[11]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[12]  A. James Stewart,et al.  Curvature-Dependent Triangulation of Implicit Surfaces , 2001, IEEE Computer Graphics and Applications.

[13]  Tao Ju,et al.  Dual contouring of hermite data , 2002, ACM Trans. Graph..

[14]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[15]  Joaquim A. Jorge,et al.  Curvature dependent polygonization of implicit surfaces , 2004, Proceedings. 17th Brazilian Symposium on Computer Graphics and Image Processing.

[16]  Samir Akkouche,et al.  Adaptive Implicit Surface Polygonization Using Marching Triangles , 2001, Comput. Graph. Forum.

[17]  T. Moller,et al.  Design of accurate and smooth filters for function and derivative reconstruction , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[18]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.