Cu5Si–Si/C composites for lithium-ion battery anodes

Abstract Cu 5 Si–Si/C composites with precursor atomic ratio of Si:Cu = 1, 2 and 4.5 have been produced by high-energy ball-milling of a mixture of copper–silicon alloy and graphite powder for anode materials of lithium-ion battery. X-ray diffraction and scanning electron microscope measurements show that Cu 5 Si alloy is formed after the intensive ball milling and alloy particles along with low-crystallite Si are interspersed in graphite uniformly. Cu 5 Si–Si/C composite electrodes deliver a larger reversible capacity than commercialized graphite and better cyclability than silicon. The increase of copper amount in the composites decreases reversible capacity but improves cycling performance. Cu 5 Si–Si/C composite with Si:Cu = 1 demonstrates an initial reversible capacity of 612 mAh g −1 at 0.2 mA cm −2 in the voltage range from 0.02 to 1.5 V. The capacity retention is respectively 74.5 and 70.0% at the 40th cycle at the current density of 0.2 and 1 mA cm −2 .

[1]  Jingying Xie,et al.  Si/C composites for high capacity lithium storage materials , 2003 .

[2]  D. H. Bradhurst,et al.  Nanocrystalline NiSi alloy as an anode material for lithium-ion batteries , 2000 .

[3]  Margret Wohlfahrt-Mehrens,et al.  A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries , 1999 .

[4]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[5]  D. Aurbach,et al.  The mechanism of lithium intercalation in graphite film electrodes in aprotic media. Part 1. High resolution slow scan rate cyclic voltammetric studies and modeling , 1997 .

[6]  J. Dahn,et al.  Pyrolyzed Polysiloxanes for Use as Anode Materials in Lithium‐Ion Batteries , 1997 .

[7]  Z. Wen,et al.  High capacity silicon/carbon composite anode materials for lithium ion batteries , 2003 .

[8]  J. Wolfenstine CaSi2 as an anode for lithium-ion batteries , 2003 .

[9]  Ram A. Sharma,et al.  Thermodynamic Properties of the Lithium‐Silicon System , 1976 .

[10]  R. Huggins,et al.  The formation and properties of amorphous silicon as negative electrode reactant in lithium systems , 2003 .

[11]  X. B. Zhang,et al.  Lithium Insertion in Carbon‐Silicon Composite Materials Produced by Mechanical Milling , 1998 .

[12]  Jeff Dahn,et al.  Lithium Insertion in Carbons Containing Nanodispersed Silicon , 1995 .

[13]  D. H. Bradhurst,et al.  Innovative nanosize lithium storage alloys with silica as active centre , 2000 .

[14]  E. Cairns,et al.  Magnesium silicide as a negative electrode material for lithium-ion batteries , 2002 .

[15]  S. Lai Solid Lithium‐Silicon Electrode , 1976 .