ElVis: A System for the Accurate and Interactive Visualization of High-Order Finite Element Solutions

This paper presents the Element Visualizer (ElVis), a new, open-source scientific visualization system for use with high-order finite element solutions to PDEs in three dimensions. This system is designed to minimize visualization errors of these types of fields by querying the underlying finite element basis functions (e.g., high-order polynomials) directly, leading to pixel-exact representations of solutions and geometry. The system interacts with simulation data through runtime plugins, which only require users to implement a handful of operations fundamental to finite element solvers. The data in turn can be visualized through the use of cut surfaces, contours, isosurfaces, and volume rendering. These visualization algorithms are implemented using NVIDIA's OptiX GPU-based ray-tracing engine, which provides accelerated ray traversal of the high-order geometry, and CUDA, which allows for effective parallel evaluation of the visualization algorithms. The direct interface between ElVis and the underlying data differentiates it from existing visualization tools. Current tools assume the underlying data is composed of linear primitives; high-order data must be interpolated with linear functions as a result. In this work, examples drawn from aerodynamic simulations-high-order discontinuous Galerkin finite element solutions of aerodynamic flows in particular-will demonstrate the superiority of ElVis' pixel-exact approach when compared with traditional linear-interpolation methods. Such methods can introduce a number of inaccuracies in the resulting visualization, making it unclear if visual artifacts are genuine to the solution data or if these artifacts are the result of interpolation errors. Linear methods additionally cannot properly visualize curved geometries (elements or boundaries) which can greatly inhibit developers' debugging efforts. As we will show, pixel-exact visualization exhibits none of these issues, removing the visualization scheme as a source of uncertainty for engineers using ElVis.

[1]  Robert Haimes,et al.  One-Sided Smoothness-Increasing Accuracy-Conserving Filtering for Enhanced Streamline Integration through Discontinuous Fields , 2008, J. Sci. Comput..

[2]  David L. Darmofal,et al.  An Optimization Framework for Anisotropic Simplex Mesh Adaptation: Application to Aerodynamic Flows , 2012 .

[3]  Robert Haimes,et al.  Rendering planar cuts through quadratic and cubic finite elements , 2004, IEEE Visualization 2004.

[4]  Robert Michael Kirby,et al.  Ray-tracing polymorphic multidomain spectral/hp elements for isosurface rendering , 2006, IEEE Transactions on Visualization and Computer Graphics.

[5]  Nelson L. Max,et al.  A High Accuracy Volume Renderer for Unstructured Data , 1998, IEEE Trans. Vis. Comput. Graph..

[6]  David K. McAllister,et al.  OptiX: a general purpose ray tracing engine , 2010, ACM Trans. Graph..

[7]  Kunibert G. Siebert,et al.  Multiresolution Visualization of Higher Order Adaptive Finite Element Simulations , 2003, Computing.

[8]  Robert Haimes,et al.  Visual3 - Interactive unsteady unstructured 3D visualization , 1991 .

[9]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[10]  Laslo T. Diosady,et al.  MASSIVELY PARALLEL SOLUTION TECHNIQUES FOR HIGHER-ORDER FINITE-ELEMENT DISCRETIZATIONS IN CFD , 2011 .

[11]  Thomas Ertl,et al.  Interactive Isocontouring of High-Order Surfaces , 2011, Scientific Visualization: Interactions, Features, Metaphors.

[12]  Viktoria Schmitt,et al.  Pressure distributions on the ONERA M6 wing at transonic Mach numbers , 1979 .

[13]  Robert Haimes,et al.  Visualization in computational fluid dynamics: a case study , 1991, Proceeding Visualization '91.

[14]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[15]  Robert Haimes,et al.  GPU-Based Interactive Cut-Surface Extraction From High-Order Finite Element Fields , 2011, IEEE Transactions on Visualization and Computer Graphics.

[16]  Robert M. O'Bara,et al.  Framework for visualizing higher-order basis functions , 2005, VIS 05. IEEE Visualization, 2005..

[17]  Spencer J. Sherwin,et al.  Nonlinear particle tracking for high-order elements , 2001 .

[18]  Todd R. Michal,et al.  Anisotropic Mesh Adaptation Through Edge Primitive Operations , 2012 .

[19]  Robert Haimes,et al.  GPU-Based Interactive Volume Visualization From High-Order Finite Element Fields , 2012 .

[20]  W. H. Gray,et al.  Colouring isoparametric contours , 1984 .

[21]  Gernot Beer,et al.  Contour plotting of data using isoparametric element representation , 1976 .

[22]  Thomas Ertl,et al.  Efficient Parallel Vectors Feature Extraction from Higher‐Order Data , 2011, Comput. Graph. Forum.

[23]  David L. Darmofal,et al.  Impact of Turbulence Model Irregularity on High-Order Discretizations , 2009 .

[24]  Chandan Singh,et al.  A simple and fast algorithm for the plotting of contours using quadrilateral meshes , 1990 .

[25]  David L. Darmofal,et al.  The Importance of Mesh Adaptation for Higher-Order Discretizations of Aerodynamic Flows , 2011 .

[26]  David E. Limbert,et al.  A predictor-corrector contouring algorithm for isoparametric 3D elements , 1983 .

[27]  David L. Darmofal,et al.  A triangular cut-cell adaptive method for high-order discretizations of the compressible Navier-Stokes equations , 2007, J. Comput. Phys..

[28]  Bernd Hamann,et al.  Contouring Curved Quadratic Elements , 2003, VisSym.

[29]  Robert M. Kirby,et al.  Accurate and interactive visualization of high-order finite element fields , 2012 .

[30]  Bernd Hamann,et al.  Ray casting curved-quadratic elements , 2004, VISSYM'04.

[31]  Chandan Singh,et al.  Accurate contour plotting using 6-node triangular elements in 2D , 2009 .

[32]  Yuan Zhou,et al.  Interactive Point-Based Rendering of Higher-Order Tetrahedral Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[33]  Thomas Ertl,et al.  Interactive High‐Quality Visualization of Higher‐Order Finite Elements , 2010, Comput. Graph. Forum.

[34]  Ross T. Whitaker,et al.  Particle Systems for Efficient and Accurate High-Order Finite Element Visualization , 2007, IEEE Transactions on Visualization and Computer Graphics.

[35]  L WilliamsPeter,et al.  A High Accuracy Volume Renderer for Unstructured Data , 1998 .

[36]  Ralf Hartmann,et al.  Error estimation and anisotropic mesh refinement for 3d laminar aerodynamic flow simulations , 2010, J. Comput. Phys..