Diffractive switching by interference in a tailored PT-symmetric grating

We numerically study the diffraction properties of a parity-time (PT) symmetric transmission grating, which operates through a limited number of guiding modes. The interferometric operation is altered by the introduction of balanced gain and loss leading, for example, to efficient switching around the spontaneous symmetry breaking point. Furthermore, we examine the influence of the longitudinal reflections, which are not common in previous PT structures. In addition, we separately tailor the periodicities of gain and loss, so that the device remains PT symmetric. However, this gives a new way to control the mode merging phenomenon, as we obtain interactions between previously distinct modes.

[1]  Hui Cao,et al.  Unidirectional invisibility induced by PT-symmetric periodic structures. , 2011, Physical review letters.

[2]  B. Malomed,et al.  Wave scattering on a domain wall in a chain of PT-symmetric couplers , 2012, 1202.5629.

[3]  Shachar Klaiman,et al.  Visualization of branch points in PT-symmetric waveguides. , 2008, Physical review letters.

[4]  Stefano Longhi,et al.  PT-symmetric laser absorber , 2010, 1008.5298.

[5]  University of Central Florida,et al.  Unidirectional nonlinear PT-symmetric optical structures , 2010, 1005.5189.

[6]  M. Segev,et al.  Observation of parity–time symmetry in optics , 2010 .

[7]  Li Ge,et al.  PT-symmetry breaking and laser-absorber modes in optical scattering systems. , 2010, Physical review letters.

[8]  Bernard Kress,et al.  Distributed Bragg reflector structures based on PT-symmetric coupling with lowest possible lasing threshold. , 2013, Optics express.

[9]  José Azaña,et al.  Nonreciprocal waveguide Bragg gratings. , 2005, Optics express.

[10]  Z. Musslimani,et al.  PT -symmetric optical lattices , 2010 .

[11]  R. Morandotti,et al.  Optics: Gain and loss mixed in the same cauldron , 2012, Nature.

[12]  N. Moiseyev,et al.  Scattering from a waveguide by cycling a non-Hermitian degeneracy , 2012 .

[13]  A. Mostafazadeh Spectral singularities of complex scattering potentials and infinite reflection and transmission coefficients at real energies. , 2009, Physical review letters.

[14]  A. Tünnermann,et al.  An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings. , 2005, Optics express.

[15]  J. Gentner,et al.  Gain spectra of coupled InGaAsP/InP quantum wells measured with a segmented contact traveling wave device , 2002 .

[16]  Y. Wang,et al.  Single-mode laser by parity-time symmetry breaking , 2014, Science.

[17]  Z. Musslimani,et al.  Theory of coupled optical PT-symmetric structures. , 2007, Optics letters.

[18]  G. Strasser,et al.  Reversing the pump dependence of a laser at an exceptional point , 2014, Nature Communications.

[19]  Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal , 2011 .

[20]  Radan Slavík,et al.  Resonant cavities based on Parity-Time-symmetric diffractive gratings. , 2013, Optics express.

[21]  Henri Benisty,et al.  Implementation of PT symmetric devices using plasmonics: principle and applications. , 2011, Optics express.

[22]  Anthony J. Kenyon,et al.  Recent developments in rare-earth doped materials for optoelectronics , 2002 .

[23]  Yuri S. Kivshar,et al.  Nonlinearly PT-symmetric systems: Spontaneous symmetry breaking and transmission resonances , 2011, 1104.0849.

[24]  Symmetry between absorption and amplification in disordered media , 1999, cond-mat/9904309.

[25]  Andrea Alù,et al.  PT metamaterials via complex-coordinate transformation optics. , 2012, Physical review letters.

[26]  U. Peschel,et al.  Parity–time synthetic photonic lattices , 2012, Nature.

[27]  P. Berini,et al.  Near infrared amplified spontaneous emission in a dye-doped polymeric waveguide for active plasmonic applications. , 2014, Optics express.

[28]  Demetrios N. Christodoulides,et al.  PT optical lattices and universality in beam dynamics , 2010 .

[29]  Li Ge,et al.  Pump-induced exceptional points in lasers. , 2011, Physical review letters.

[30]  Trevor M. Benson,et al.  Ultrafast optical switching using parity–time symmetric Bragg gratings , 2013 .

[31]  H. Yilmaz,et al.  Loss-induced suppression and revival of lasing , 2014, Science.

[32]  Bernard Kress,et al.  Free space diffraction on active gratings with balanced phase and gain/loss modulations. , 2012, Optics express.

[33]  Henri Benisty,et al.  Switching using PT symmetry in plasmonic systems: positive role of the losses. , 2013, Optics express.

[34]  Z. Musslimani,et al.  Beam dynamics in PT symmetric optical lattices. , 2008, Physical review letters.

[35]  C. Bender,et al.  Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.

[36]  Sergey Eyderman,et al.  Waveguide structures with antisymmetric gain/loss profile. , 2010, Optics express.

[37]  R. Morandotti,et al.  Observation of PT-symmetry breaking in complex optical potentials. , 2009, Physical review letters.

[38]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[39]  Air Force Research Laboratory,et al.  PT-symmetric Talbot effects. , 2012, Physical review letters.

[40]  M. Kulishov,et al.  Trapping light in a ring resonator using a grating-assisted coupler with asymmetric transmission. , 2005, Optics express.

[41]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[42]  Vincenzo Galdi,et al.  Tunneling of obliquely incident waves through PT -symmetric epsilon-near-zero bilayers , 2014, 1401.1619.

[43]  Tsampikos Kottos,et al.  Optical physics: Broken symmetry makes light work , 2010 .