Effects of salinity and two coastal waters on the growth and toxin content of the dinoflagellate Alexandrium minutum

The dinoflagellate Alexandrium minutum strain AM89BM was studied to investigate its capacity to adapt to different salinities and the influence of salinity on cellular content of paralytic shellfish toxins (PST), in batch culture in enriched offshore seawater media. The strain shows optimal growth (average rate � 0.5 div day � 1 ) at salinities between 20 and 37 p.s.u., peaking at 25 p.s.u. (0.63 � 0.07 div day � 1 ). Under a high NO3 ‐ :PO4 3‐ mole ratio (76), cell PST content increased during growth phase, peaking toward the end of growth phase or in the early stationary phase. The PST content was low (� 10 fmol PST cell � 1 ) from 30 to 37 p.s.u., but it increased at lower salinities, with the maximum value (� 50 fmol PST cell � 1 ) recorded at 15 p.s.u. We then compared growth rate and toxin content of A. minutum cells grown in 3- and 0.2-m filtered estuarine water (27 p.s.u.), and a similarly filtered seawater collected from an oyster farming area (36 p.s.u.), with a N- and P-enriched offshore seawater (37 p.s.u.). In both estuarine water treatments, growth was fast (� 0.8 div day � 1 ) and the cell PST content increased only in the early growth phase, peaking in mid-growth phase at 9.56 � 1.06 and 7.63 � 0.44 fmol PST cell � 1 in the 3- and 0.2-m filtered waters, respectively. In the 3-m filtered oyster farm water, although inorganic nutrient concentrations were very low, A. minutum grew well (0.68 � 0.06 div day � 1 ), suggesting mixotrophic nutrition; as PST production was nearly zero, the cell toxin content decreasing to 1.11 fmol PST cell � 1 , we hypothesize that toxin biosynthesis was greatly weakened due to the lack of amino acid precursors in prey material. In the offshore seawater, A. minutum grew slowly (0.18 � 0.04 div day � 1 ) and cells lost toxins down to 1.08 fmol PST cell � 1 , suggesting that growth was limited and PST production stopped due to the lack of some vitamins, and/or trace metals.

[1]  D. Kirchman,et al.  The uptake of inorganic nutrients by heterotrophic bacteria , 1994, Microbial Ecology.

[2]  O. Matsuda,et al.  Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae) , 2002 .

[3]  J. Rooney-Varga,et al.  Stimulation of Alexandrium fundyense growth by bacterial assemblages from the Bay of Fundy , 2002, Journal of applied microbiology.

[4]  F. Saucier,et al.  The link between precipitation, river runoff, and blooms of the toxic dinoflagellate Alexandrium tamarense in the St. Lawrence , 2002 .

[5]  敏隆 西島,et al.  有毒渦鞭毛藻 Alexandrium catenella の増殖に及ぼす B 群ビタミンの影響 , 2001 .

[6]  S. Taguchi,et al.  Variability in Toxicity of the Dinoflagellate Alexandrium Tamarense Isolated from Hiroshima Bay, Western Japan, as a Reflection of Changing Environmental Conditions , 2001 .

[7]  D. Hwang,et al.  Influence of environmental and nutritional factors on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. , 2000, Toxicon : official journal of the International Society on Toxinology.

[8]  Jack J. Middelburg,et al.  Nitrogen uptake by heterotrophic bacteria and phytoplankton in the nitrate-rich Thames estuary , 2000 .

[9]  Y. Fukuyo,et al.  The first finding of toxic dinoflagellate Alexandrium minutum in Vietnam , 2000 .

[10]  C. Hummert,et al.  Effect of different nitrogen/phosphorus nutrient ratios on the toxin content in Alexandrium minutum , 1999 .

[11]  J. Adolf,et al.  FEEDING, PIGMENTATION, PHOTOSYNTHESIS AND GROWTH OF THE MIXOTROPHIC DINOFLAGELLATE GYRODINIUM GALATHEANUM , 1999 .

[12]  P. Carlsson,et al.  Cycling of biologically available nitrogen in riverine humic substances between marine bacteria, a heterotrophic nanoflagellate and a photosynthetic dinoflagellate , 1999 .

[13]  D. Jacobson,et al.  A Brief History of Dinoflagellate Feeding Research 1 , 1999 .

[14]  D. Stoecker Mixotrophy among Dinoflagellates 1 , 1999 .

[15]  Jean-Paul Parkhill Effects of salinity, light and inorganic nitrogen on growth and toxigenicity of the marine dinoflagellate Alexandrium tamarense from northeastern Canada , 1999 .

[16]  K. Flynn,et al.  Amino acid uptake by the toxic dinoflagellate Alexandrium fundyense , 1999 .

[17]  P. Carlsson,et al.  Interactions between a marine dinoflagellate (Alexandrium catenella) and a bacterial community utilizing riverine humic substances , 1998 .

[18]  C. Legrand,et al.  Uptake of high molecular weight dextran by the dinoflagellate Alexandrium catenella , 1998 .

[19]  C. Legrand,et al.  Induced phagotrophy in the photosynthetic dinoflagellate Heterocapsa triquetra , 1998 .

[20]  P. Carlsson,et al.  Utilization of Dissolved Organic Matter (DOM) by Phytoplankton Including Harmful Species , 1998 .

[21]  P. Carlsson,et al.  The Ecological Significance of Phagotrophy in Photosynthetic Flagellates , 1998 .

[22]  A. Cembella Ecophysiology and Metabolism of Paralytic Shellfish Toxins in Marine Microalgae , 1998 .

[23]  Donald M. Anderson,et al.  Physiological ecology of harmful algal blooms , 1998 .

[24]  T. Smayda,et al.  Harmful algal blooms: Their ecophysiology and general relevance to phytoplankton blooms in the sea , 1997 .

[25]  F. H. Chang,et al.  Growth responses of Alexandrium minutum (Dinophyceae) as a function of three different nitrogen sources and irradiance , 1997 .

[26]  A. Skovgaard Mixotrophy in Fragilidium subglobosum (Dinophyceae): growth and grazing responses as functions of light intensity , 1996 .

[27]  G. Maimone,et al.  Environmental Factors and Seasonal Occurrence of the DinoflagellateAlexandrium minutum, a PSP Potential Producer, in a Mediterranean Lagoon , 1996 .

[28]  P. Tester,et al.  Influences of riverine humic substances on bacteria, protozoa, phytoplankton, and copepods in a coastal plankton community , 1995 .

[29]  Y. Oshima Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins , 1995 .

[30]  E. G. Vrieling,et al.  Harmful Marine Algal Blooms , 1995 .

[31]  P. Carlsson,et al.  Availability of humic bound nitrogen for coastal phytoplankton , 1993 .

[32]  K. Nygaard,et al.  Bacterivory in algae: A survival strategy during nutrient limitation , 1993 .

[33]  Engel G. Vrieling,et al.  TOXIC PHYTOPLANKTON BLOOMS IN THE SEA , 1993 .

[34]  Y. Halim,et al.  Long-term eutrophication in a semi-closed bay: the Eastern Harbour of Alexandria , 1992 .

[35]  D. Anderson,et al.  Alongshore transport of a toxic phytoplankton bloom in a buoyancy current: Alexandrium tamarense in the Gulf of Maine , 1992 .

[36]  P. Harrison,et al.  The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology , 1991 .

[37]  Donald M. Anderson,et al.  Dynamics and physiology of saxitoxin production by the dinoflagellatesAlexandrium spp. , 1990 .

[38]  E. Granéli,et al.  Effects of river water of different origin on the growth of marine dinoflagellates and diatoms in laboratory cultures , 1990 .

[39]  Marta Estrada,et al.  Development of a toxic Alexandrium minutum Halim (Dinophyceae) bloom in the harbour of Sant Carles de la Ràpita (Ebro Delta, northwestern Mediterranean) , 1990 .

[40]  A. Cembella,et al.  Toxin composition of alternative life history stages of Alexandrium excavatum, as determined by high-performance liquid chromatography , 1990 .

[41]  A. Cembella,et al.  Population dynamics and toxin composition of Protogonyaulax tamarensis from the St. Lawrence estuary , 1989 .

[42]  G. Hallegraeff,et al.  Three estuarine Australian dinoflagellates that can produce paralytic shellfish toxins , 1988 .

[43]  A. Cembella,et al.  Toxicity of cultured isolates and natural populations of Protogonyaulax tamarensis from the St. Lawrence Estuary , 1988 .

[44]  Paul J. Harrison,et al.  Effects of nutrient limitation on toxin production and composition in the marine dinoflagellate Protogonyaulax tamarensis , 1987 .

[45]  Donald M. Anderson,et al.  Toxic Marine Phytoplankton , 1987 .

[46]  L. Shubert Algae as ecological indicators , 1986 .

[47]  A. White High toxin content in the dinoflagellate Gonyaulax excavata in nature. , 1986, Toxicon : official journal of the International Society on Toxinology.

[48]  K. Johnson,et al.  Determination of total primary amines in seawater and plant nectar with flow injection sample processing and fluorescence detection , 1982 .

[49]  D. Anderson,et al.  Regulation of growth in an estuarine clone of Gonyaulax tam arensis Lebour: Salinity-dependent temperature responses , 1982 .

[50]  Y. Fukuyo,et al.  Comparison of toxicities of protogonyaulax cells of various sizes. , 1982 .

[51]  Ian Morris The Physiological Ecology of Phytoplankton , 1981 .

[52]  R. Guillard,et al.  A method for the rapid and precise determination of acclimated phytoplankton reproduction rates , 1981 .

[53]  Alan W. While,et al.  SALINITY EFFECTS ON GROWTH AND TOXIN CONTENT OF GONYAULAX EXCAVATA. A MARINE DINOFLAGELLATE CAUSING PARALYTIC SHELLFISH POISONING1 , 1978 .

[54]  W. Stewart Algal physiology and biochemistry , 1975 .

[55]  R. Guillard,et al.  GROWTH OF VITAMIN B12‐REQUIRING MARINE DIATOMS IN MIXED LABORATORY CULTURES WITH VITAMIN B12‐PRODUCING MARINE BACTERIA 1 2 , 1974 .

[56]  J. Stein Handbook of Phycological methods - Culture methods and Growth measurements , 1973 .

[57]  Janet R. Stein-Taylor Culture methods and growth measurements , 1973 .

[58]  A. Prakash Growth and Toxicity of a Marine Dinoflagellate, Gonyaulax tamarensis , 1967 .

[59]  C. Yentsch,et al.  A method for the determination of phytoplankton chlorophyll and phaeophytin by fluorescence , 1963 .

[60]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[61]  D. Martínez,et al.  The Production of Vitamin B12‐Active Substances by Marine Bacteria , 1957 .

[62]  H. Utermöhl Neue Wege in der quantitativen Erfassung des Plankton.(Mit besonderer Berücksichtigung des Ultraplanktons.): Mit 4 Abbildungen im Text , 1931 .