Estimation of k-Factor GIGARCH Process: A Monte Carlo Study

In this article, we discuss the parameter estimation for a k-factor generalized long-memory process with conditionally heteroskedastic noise. Two estimation methods are proposed. The first method is based on the conditional distribution of the process and the second is obtained as an extension of Whittle's estimation approach. For comparison purposes, Monte Carlo simulations are used to evaluate the finite sample performance of these estimation techniques, using four different conditional distribution functions.

[1]  B. Hansen Autoregressive Conditional Density Estimation , 1994 .

[2]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[3]  R. Leipus,et al.  A generalized fractionally differencing approach in long-memory modeling , 1995 .

[4]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[5]  Andrew Harvey,et al.  The econometric analysis of time series , 1991 .

[6]  Leon M. Hall,et al.  Special Functions , 1998 .

[7]  Richard T. Baillie,et al.  Analysing inflation by the fractionally integrated ARFIMA–GARCH model , 1996 .

[8]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[9]  D. Guégan A New Model: The k-Factor GIGARCH Process , 2000 .

[10]  C. Chung,et al.  Estimating a generalized long memory process , 1996 .

[11]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[12]  M. C. Jones,et al.  A skew extension of the t‐distribution, with applications , 2003 .

[13]  W. D. Ray,et al.  The Econometric Analysis of Time Series. , 1981 .

[14]  Andrew A. Weiss,et al.  Asymptotic Theory for ARCH Models: Estimation and Testing , 1986, Econometric Theory.

[15]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[16]  D. Guégan,et al.  Estimating parameters of a k -factor GIGARCH process , 2004 .

[17]  D. Guégan A prospective study of the k-factor Gegenbauer processes with heteroscedastic errors and an application to inflation rates , 2003 .

[18]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[19]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[20]  D. Guégan,et al.  Comparison of parameter estimation methods in cyclical long memory time series , 2001 .

[21]  Wai Keung Li,et al.  On Fractionally Integrated Autoregressive Moving-Average Time Series Models with Conditional Heteroscedasticity , 1997 .

[22]  Amado Peiró Skewness in financial returns , 1999 .

[23]  Liudas Giraitis,et al.  WHITTLE ESTIMATION OF ARCH MODELS , 2000, Econometric Theory.

[24]  D. Ka,et al.  A k-factor GIGARCH process: estimation and application on electricity market spot prices , 2004, 2004 International Conference on Probabilistic Methods Applied to Power Systems.

[25]  S. R. C. Lopes,et al.  Correlated Errors in the Parameters Estimation of the ARFIMA Model: A Simulated Study , 2006 .

[26]  T. Pe,et al.  WHITTLE ESTIMATION OF ARCH MODELS , 2001 .

[27]  M. Steel,et al.  On Bayesian Modelling of Fat Tails and Skewness , 1998 .

[28]  Ching-Fan Chung A GENERALIZED FRACTIONALLY INTEGRATED AUTOREGRESSIVE MOVING-AVERAGE PROCESS , 1996 .

[29]  H. L. Gray,et al.  ON GENERALIZED FRACTIONAL PROCESSES , 1989 .

[30]  Abdou Ka Diongue Modélisation longue mémoire multivariée : applications aux problématiques du producteur d'EDF dans le cadre de la libéralisation du marché européen de l'électricité , 2005 .

[31]  Bovas Abraham,et al.  ESTIMATION OF PARAMETERS IN ARFIMA PROCESSES: A SIMULATION STUDY , 2001 .