Time-Consistent, Risk-Averse Dynamic Pricing

Abstract Many industries use dynamic pricing on an operational level to maximize revenue from selling a fixed capacity over a finite horizon. Classical risk-neutral approaches do not accommodate the risk aversion often encountered in practice. When risk aversion is considered, time-consistency becomes an important issue. In this paper, we use a dynamic coherent risk-measure to ensure that decisions are actually implemented and only depend on states that may realize in the future. In particular, we use the risk measure Conditional Value-at-Risk (CVaR), which recently became popular in areas like finance, energy or supply chain management. A result is that the risk-averse dynamic pricing problem can be transformed to a classical, risk-neutral problem. To do so, a surprisingly simple modification of the selling probabilities suffices. Thus, all structural properties carry over. Moreover, we show that the risk-averse and the risk-neutral solution of the original problem are proportional under certain conditions, that is, their optimal decision variable and objective values are proportional, respectively. In a small numerical study, we evaluate the risk vs. revenue trade-off and compare the new approach with existing approaches from literature. This has straightforward implications for practice. On the one hand, it shows that existing dynamic pricing algorithms and systems can be kept in place and easily incorporate risk aversion. On the other hand, our results help to understand many risk-averse decision makers who often use “conservative” estimates of selling probabilities or discount optimal prices.

[1]  Alexander Shapiro,et al.  Conditional Risk Mappings , 2005, Math. Oper. Res..

[2]  Jochen Gönsch,et al.  Optimizing conditional value-at-risk in dynamic pricing , 2017, OR Spectr..

[3]  A. V. den Boer,et al.  Dynamic Pricing and Learning: Historical Origins, Current Research, and New Directions , 2013 .

[4]  Georg Ch. Pflug,et al.  Time-inconsistent multistage stochastic programs: Martingale bounds , 2016, Eur. J. Oper. Res..

[5]  Chung-Chi Hsieh,et al.  Manufacturer's return policy in a two-stage supply chain with two risk-averse retailers and random demand , 2010, Eur. J. Oper. Res..

[6]  Evan L. Porteus,et al.  Selling to the Newsvendor: An Analysis of Price-Only Contracts , 2001, Manuf. Serv. Oper. Manag..

[7]  R. Bellman Dynamic programming. , 1957, Science.

[8]  Youhua Chen,et al.  Customer and retailer rebates under risk aversion , 2011 .

[9]  Andrzej Ruszczynski,et al.  Scenario decomposition of risk-averse multistage stochastic programming problems , 2012, Ann. Oper. Res..

[10]  Jochen Gönsch,et al.  Dynamic Pricing with Strategic Customers , 2012 .

[11]  Weili Xue,et al.  Optimal inventory and hedging decisions with CVaR consideration , 2015 .

[12]  Alexander Shapiro,et al.  Coherent risk measures in inventory problems , 2007, Eur. J. Oper. Res..

[13]  Joern Meissner,et al.  Value-at-risk optimal policies for revenue management problems , 2015 .

[14]  Lode Li,et al.  A Stochastic Theory of the Firm , 2015, Math. Oper. Res..

[15]  Gérard P. Cachon,et al.  Contracting to Assure Supply: How to Share Demand Forecasts in a Supply Chain , 2001, Manag. Sci..

[16]  G. Bamberg,et al.  Is time consistency compatible with risk aversion? , 2016 .

[17]  Alexander Shapiro,et al.  Risk neutral and risk averse Stochastic Dual Dynamic Programming method , 2013, Eur. J. Oper. Res..

[18]  Matthias Koenig,et al.  Risk management policies for dynamic capacity control , 2015, Comput. Oper. Res..

[19]  T. C. Justino,et al.  Application of CVaR risk aversion approach in the expansion and operation planning and for setting the spot price in the Brazilian hydrothermal interconnected system , 2014, 2014 Power Systems Computation Conference.

[20]  W. Lieberman The Theory and Practice of Revenue Management , 2005 .

[21]  Matthias Koenig,et al.  List pricing versus dynamic pricing: Impact on the revenue risk , 2010, Eur. J. Oper. Res..

[22]  Hing-Man Leung,et al.  Intertemporal Price Discrimination , 2000 .

[23]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[24]  Stan Uryasev,et al.  Probabilistic Constrained Optimization , 2000 .

[25]  Alexandre Street,et al.  On the Conditional Value-at-Risk probability-dependent utility function , 2010 .

[26]  Alexander Shapiro,et al.  Decomposability and time consistency of risk averse multistage programs , 2016, Oper. Res. Lett..

[27]  S. Weber,et al.  DISTRIBUTION‐INVARIANT RISK MEASURES, INFORMATION, AND DYNAMIC CONSISTENCY , 2006 .

[28]  Hayriye Ayhan,et al.  Relationships Among Three Assumptions in Revenue Management , 2004, Oper. Res..

[29]  A. Markandya,et al.  Monopoly with random demand , 1971 .

[30]  G. Pflug Some Remarks on the Value-at-Risk and the Conditional Value-at-Risk , 2000 .

[31]  F. Delbaen,et al.  Dynamic Monetary Risk Measures for Bounded Discrete-Time Processes , 2004, math/0410453.

[32]  Andrew E. B. Lim,et al.  Relative Entropy, Exponential Utility, and Robust Dynamic Pricing , 2007, Oper. Res..

[33]  E. Rowland Theory of Games and Economic Behavior , 1946, Nature.

[34]  G. Ryzin,et al.  Optimal dynamic pricing of inventories with stochastic demand over finite horizons , 1994 .

[35]  J. Lancaster,et al.  The financial risk of airline revenue management , 2003 .

[36]  Charles A. Wilson On the Optimal Pricing Policy of a Monopolist , 1988, Journal of Political Economy.

[37]  Kuancheng Huang,et al.  A model for airline seat control considering revenue uncertainty and risk , 2011 .

[38]  Zhe George Zhang,et al.  Technical Note - A Risk-Averse Newsvendor Model Under the CVaR Criterion , 2009, Oper. Res..

[39]  R. Hartl,et al.  Optimal pricing and production in an inventory model , 1985 .

[40]  Michael Z. F. Li,et al.  Risk-sensitive dynamic pricing for a single perishable product , 2009, Oper. Res. Lett..

[41]  Erlon Cristian Finardi,et al.  On Solving Multistage Stochastic Programs with Coherent Risk Measures , 2013, Oper. Res..

[42]  R. Phillips,et al.  Pricing and Revenue Optimization , 2005 .

[43]  Matthias Koenig,et al.  Risk minimising strategies for revenue management problems with target values , 2016, J. Oper. Res. Soc..

[44]  Andrzej Ruszczynski,et al.  Risk-averse dynamic programming for Markov decision processes , 2010, Math. Program..

[45]  Gabriel R. Bitran,et al.  An overview of pricing models for revenue management , 2003, IEEE Engineering Management Review.

[46]  Isaac Meilijson,et al.  Intertemporal Price Discrimination and Sales Strategy under Incomplete Information , 1985 .

[47]  Joao P. S. Catalao,et al.  Scheduling of a hydro producer considering head-dependency, price scenarios and risk-aversion , 2012 .

[48]  Elisa Luciano,et al.  VaR as a risk measure for multiperiod static inventory models , 2003 .

[49]  Raimund M. Kovacevic Time consistency and information monotonicity of multiperiod acceptability functionals , 2009 .

[50]  Jochen Gönsch,et al.  Practical decision rules for risk-averse revenue management using simulation-based optimization , 2016, Journal of Revenue and Pricing Management.

[51]  Jun-ya Gotoh,et al.  Newsvendor solutions via conditional value-at-risk minimization , 2007, Eur. J. Oper. Res..

[52]  David Heath,et al.  Coherent multiperiod risk adjusted values and Bellman’s principle , 2007, Ann. Oper. Res..

[53]  Jochen Gönsch,et al.  Optimizing the conditional value-at-risk in revenue management , 2013 .

[54]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[55]  Yuri Levin,et al.  Risk in Revenue Management and Dynamic Pricing , 2008, Oper. Res..

[56]  Christiane Barz,et al.  Risk-sensitive capacity control in revenue management , 2007, Math. Methods Oper. Res..

[57]  Frank Riedel,et al.  Dynamic Coherent Risk Measures , 2003 .

[58]  Rainer Schlosser A stochastic dynamic pricing and advertising model under risk aversion , 2015 .

[59]  Wen-Chyuan Chiang,et al.  An overview of research on revenue management: current issues and future research , 2007 .

[60]  Vitor L. de Matos,et al.  Dynamic sampling algorithms for multi-stage stochastic programs with risk aversion , 2012, Eur. J. Oper. Res..

[61]  Alexandre Street,et al.  Time consistency and risk averse dynamic decision models: Definition, interpretation and practical consequences , 2014, Eur. J. Oper. Res..

[62]  Zhongping Wan,et al.  Bilevel newsvendor models considering retailer with CVaR objective , 2009, Comput. Ind. Eng..

[63]  Alexander Shapiro,et al.  Analysis of stochastic dual dynamic programming method , 2011, Eur. J. Oper. Res..

[64]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[65]  Jochen Gönsch,et al.  A Survey on Risk-Averse and Robust Revenue Management , 2017, Eur. J. Oper. Res..

[66]  Baichun Xiao,et al.  Maximizing Revenues of Perishable Assets with a Risk Factor , 1999, Oper. Res..

[67]  John N. Tsitsiklis,et al.  Congestion-dependent pricing of network services , 2000, TNET.

[68]  Susana V. Mondschein,et al.  Periodic Pricing of Seasonal Products in Retailing , 1997 .

[69]  G. Pflug,et al.  Multistage Stochastic Optimization , 2014 .

[70]  Alexander Shapiro,et al.  On a time consistency concept in risk averse multistage stochastic programming , 2009, Oper. Res. Lett..