Creep damage assessment in titanium alloy using a nonlinear ultrasonic technique

This paper deals with nonlinear domains (second harmonic amplitude) in order to evaluate creep damage in titanium alloy. Creep damage has been observed in the form of microvoids at primary α/transformed β interface and the volume fraction of voids increases progressively with creep deformation. A good agreement between the experimental results and metallographic studies indicate the usefulness of the method for in-service evaluation of creep damage. A nonlinear ultrasonic technique was found to be significantly more sensitive for the assessment of creep damage.

[1]  R. Torguet,et al.  Ultrafast echotomographic system using optical processing of ultrasonic signals , 1977 .

[2]  M. Hirao,et al.  Ultrasonic velocity change with creep damage in copper , 1990 .

[3]  V. A. Krasil'nikov,et al.  Nonlinear acoustics in a problem of diagnosing the strength of solids , 1989 .

[4]  D. Thompson,et al.  Review of Progress in Quantitative Nondestructive Evaluation , 1982 .

[5]  Kyung-Young Jhang,et al.  Evaluation of material degradation using nonlinear acoustic effect , 1999 .

[6]  Juan A. Gallego-Juárez,et al.  Ultrasonic evaluation of creep damage in steel , 1993 .

[7]  Gerd Dobmann,et al.  Early detection of creep damage by ultrasonic and electromagnetic techniques , 1991 .

[8]  N Parida,et al.  Non-linear ultrasonic technique to assess fatigue damage in structural steel , 2006 .

[9]  Peter B. Nagy,et al.  Fatigue damage assessment by nonlinear ultrasonic materials characterization , 1998 .

[10]  Ulf Stigh,et al.  Influence of damage on ultrasonic velocity and strength—analysis and experiments , 1987 .

[11]  Baldev Raj,et al.  Assessment of microstructures and mechanical behaviour of metallic materials through non-destructive characterisation , 2003 .

[12]  William T. Yost,et al.  Nonlinear ultrasonic characterization of fatigue microstructures , 2001 .

[13]  Shinji Aoki,et al.  Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels , 2001 .

[14]  R. Fields,et al.  Creep cavities in copper: An ultrasonic-velocity and composite-modeling study , 1987 .

[15]  D. Balzar,et al.  Nonlinear Ultrasonic Parameter in Quenched Martensitic Steels , 1998 .

[16]  T. Ohtani Acoustic damping characterization and microstructure evolution during high-temperature creep of an austenitic stainless steel , 2005 .

[17]  W. L. Morris,et al.  Acoustic harmonic generation at unbonded interfaces and fatigue cracks , 1978 .