Applications of Absorption Heat Transformers in Desalination, Cogeneration and the Use of Alternative Working Pairs

Doctor of Philosophy in Mechanical Engineering. Thesis (Ph.D.)--Eastern Mediterranean University, Faculty of Engineering, Dept. of Mechanical Engineering, 2014. Supervisor: Prof. Dr. Ugur Atikol.

[1]  Xin Wang,et al.  Study on a new ejection-absorption heat transformer , 2001 .

[2]  Philippe Haberschill,et al.  A numerical model for the dynamic simulation of a recirculation single-effect absorption chiller , 2012 .

[3]  Hao Feng,et al.  Thermodynamic properties of new heat pump working pairs: 1,3-Dimethylimidazolium dimethylphosphate and water, ethanol and methanol , 2010 .

[4]  Soteris A. Kalogirou,et al.  Different methods for modeling absorption heat transformer powered by solar pond , 2007 .

[5]  Mortaza Yari,et al.  Proposal and analysis of a new combined cogeneration system based on the GT-MHR cycle , 2012 .

[6]  P. Bansal,et al.  Absorber performance of a water/lithium–bromide absorption chiller , 2008 .

[7]  Wilfrido Rivera,et al.  Energy and exergy analysis of an experimental single‐stage heat transformer operating with the water/lithium bromide mixture , 2010 .

[8]  Marc A. Rosen,et al.  Analysis of crystallization risk in double effect absorption refrigeration systems , 2011 .

[9]  Zongchang Zhao,et al.  Vapor pressures, excess enthalpies, and specific heat capacities of the binary working pairs containing the ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate , 2011 .

[10]  O. Kaynakli,et al.  THERMODYNAMIC ANALYSIS OF ABSORPTION REFRIGERATION SYSTEM BASED ON ENTROPY GENERATION , 2007 .

[11]  D. Tang,et al.  Thermodynamic performances of [mmim]DMP/Methanol absorption refrigeration , 2012 .

[12]  Rosenberg J. Romero,et al.  Exergy analysis of an experimental single-stage heat transformer operating with single water/lithium bromide and using additives (1-octanol and 2-ethyl-1-hexanol) , 2011 .

[13]  Noam Lior,et al.  Proposal and analysis of a high-efficiency combined desalination and refrigeration system based on the LiBr–H2O absorption cycle—Part 1: System configuration and mathematical model , 2011 .

[14]  V. Zare,et al.  Parametric study and optimization of an ejector-expansion TRCC cycle integrated with a water purification system , 2013 .

[15]  J. Siqueiros,et al.  Experimental study of a graphite disks absorber couple to a heat transformer , 2013 .

[16]  Wilfrido Rivera,et al.  Experimental study of the use of additives in the performance of a single‐stage heat transformer operating with water–lithium bromide , 2005 .

[17]  Rosenberg J. Romero,et al.  Increase of COP for heat transformer in water purification systems. Part I – Increasing heat source temperature , 2007 .

[18]  Hitoshi Matsushima,et al.  Dynamic simulation program with object-oriented formulation for absorption chillers (modelling, verification, and application to triple-effect absorption chiller) , 2010 .

[19]  Jiabin Chen,et al.  Application of absorption heat transformer to recover waste heat from a synthetic rubber plant , 2003 .

[20]  Rosenberg J. Romero,et al.  Optimal water purification using low grade waste heat in an absorption heat transformer , 2008 .

[21]  D. Zheng,et al.  Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O+[DMIM]DMP system , 2012 .

[22]  Yan Chen,et al.  Experimental researches on characteristics of vapor–liquid equilibrium of NH3–H2O–LiBr system , 2006 .

[23]  Mortaza Yari,et al.  Alternative absorption heat transformer configurations integrated with water desalination system , 2013 .

[24]  Lourdes García-Rodríguez,et al.  Preliminary design and cost analysis of a solar distillation system , 1999 .

[25]  Andrei G. Fedorov,et al.  Thermodynamic analysis of an absorption refrigeration system with ionic-liquid/refrigerant mixture as a working fluid , 2012 .

[26]  S. C. Kaushik,et al.  Energy and exergy analysis of single effect and series flow double effect water–lithium bromide absorption refrigeration systems , 2009 .

[27]  Adnan Sözen,et al.  Performance improvement of absorption heat transformer , 2007 .

[28]  Zongchang Zhao,et al.  Thermodynamic properties of a new working pair: 1-Ethyl-3-methylimidazolium ethylsulfate and water , 2010 .

[29]  C. Invernizzi,et al.  Carbon dioxide power cycles using liquid natural gas as heat sink , 2009 .

[30]  Rajagopal Saravanan,et al.  Experimental studies on absorption heat transformer coupled distillation system , 2011 .

[31]  Siyoung Jeong,et al.  Dynamic simulation of an absorption heat pump for recovering low grade waste heat , 1998 .

[32]  A. Moisseytsev,et al.  Investigation of alternative layouts for the supercritical carbon dioxide Brayton cycle for a sodium-cooled fast reactor. , 2009 .

[33]  A. Moisseytsev,et al.  A numerical investigation of the sCO2 recompression cycle off-design behaviour, coupled to a sodium cooled fast reactor, for seasonal variation in the heat sink temperature , 2013 .

[34]  Yiping Dai,et al.  Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network , 2010 .

[35]  Ángel Martín,et al.  Thermodynamic analysis of absorption refrigeration cycles using ionic liquid + supercritical CO2 pairs , 2010 .

[36]  Mortaza Yari,et al.  A novel cogeneration cycle based on a recompression supercritical carbon dioxide cycle for waste heat recovery in nuclear power plants , 2012 .

[37]  G. Poncia,et al.  Implementation of an object-oriented dynamic modeling library for absorption refrigeration systems , 2006 .

[38]  Noam Lior,et al.  Proposal and analysis of a high-efficiency combined desalination and refrigeration system based on the LiBr–H2O absorption cycle—Part 2: Thermal performance analysis and discussions , 2011 .

[39]  V. Gómez,et al.  Performance modelling of single and double absorption heat transformers , 2010 .

[40]  Yasuyoshi Kato,et al.  Thermal-Hydraulic Characteristics of a Printed Circuit Heat Exchanger in a Supercritical CO2 loop , 2005 .

[41]  Zhiwen Ma,et al.  SUPERCRITICAL CARBON DIOXIDE POWER CYCLE CONFIGURATION FOR USE IN CONCENTRATING SOLAR POWER SYSTEMS , 2012 .

[42]  Rabah Gomri,et al.  Energy and exergy analyses of seawater desalination system integrated in a solar heat transformer. , 2009 .

[43]  Erasmo Cadenas,et al.  Exergy analysis of an experimental heat transformer for water purification , 2011 .

[44]  Roberto Best,et al.  Single stage and double absorption heat transformers used to recover energy in a distillation column of butane and pentane , 2003 .

[45]  Tadashi Uemura,et al.  Performance characteristics of the water-lithium bromide-zinc chloride-calcium bromide absorption refrigerating machine, absorption heat pump and absorption heat transformer , 1990 .

[46]  René Rieberer,et al.  Thermodynamic simulation of alternative absorption heat pumping processes using natural working fluids , 2012 .

[47]  Essam E. Khalil Potable water technology development in Egypt , 2001 .

[48]  A. Lucas,et al.  Absorption of Water Vapor into New Working Fluids for Absorption Refrigeration Systems , 2007 .

[49]  Robin D. Rogers,et al.  Ionic Liquids--Solvents of the Future? , 2003, Science.

[50]  Liu Hui,et al.  Evaluation of a seasonal storage system of solar energy for house heating using different absorption couples , 2011 .

[51]  I. Horuz,et al.  Absorption heat transformers and an industrial application , 2010 .

[52]  Ugur Atikol,et al.  Overview of Ionic Liquids Used as Working Fluids in Absorption Cycles , 2013 .

[53]  Paul Kohlenbach,et al.  A dynamic simulation model for transient absorption chiller performance. Part I The model , 2008 .

[54]  Kamel Ghali,et al.  Experimental and theoretical study of an integrated thermoelectric–photovoltaic system for air dehumidification and fresh water production , 2012 .

[55]  Gershon Grossman,et al.  Experimental Investigation of a LiCl-Water Open Absorption System for Cooling and Dehumidification , 2004 .

[56]  Y. Jeong,et al.  Performance of supercritical Brayton cycle using CO2-based binary mixture at varying critical points for SFR applications , 2013 .

[57]  Nicolas Galanis,et al.  Parametric study and optimization of a transcritical power cycle using a low temperature source , 2010 .

[58]  Mortaza Yari,et al.  Simulation study of the combination of absorption refrigeration and ejector-expansion systems , 2013 .

[59]  Andrei G. Fedorov,et al.  Absorption Heat Pump/Refrigeration System Utilizing Ionic Liquid and Hydrofluorocarbon Refrigerants , 2012 .

[60]  K. Marsh,et al.  Room temperature ionic liquids and their mixtures—a review , 2004 .

[61]  Adnan Sözen,et al.  Effect of irreversibilities on performance of an absorption heat transformer used to increase solar pond¿s temperature , 2004 .

[62]  T. Cachot,et al.  Evaluation of the performance of an absorption–demixtion heat pump for upgrading thermal waste heat , 1998 .

[63]  Trent Wells,et al.  WASTE HEAT ENERGY SUPERCRITICAL CARBON DIOXIDE RECOVERY CYCLE ANALYSIS AND DESIGN , 2012 .

[64]  M. Driscoll,et al.  The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles , 2006 .

[65]  Mortaza Yari,et al.  A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles , 2011 .

[66]  A. Yokozeki,et al.  Ammonia Solubilities in Room-Temperature Ionic Liquids , 2007 .

[67]  Brian D. Iverson,et al.  Supercritical CO2 Brayton cycles for solar-thermal energy , 2013 .

[68]  Jahar Sarkar,et al.  Second law analysis of supercritical CO2 recompression Brayton cycle , 2009 .

[69]  Dapeng Hu,et al.  Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water , 2012 .

[70]  Jahar Sarkar,et al.  Optimization of recompression S-CO2 power cycle with reheating , 2009 .

[71]  Rabah Gomri,et al.  Thermal seawater desalination: Possibilities of using single effect and double effect absorption heat transformer systems , 2010 .

[72]  Mortaza Yari,et al.  Utilization of waste heat from GT-MHR for power generation in organic Rankine cycles. , 2010 .

[73]  K. R. Seddon,et al.  Ionic liquids: a taste of the future. , 2003, Nature materials.

[74]  N. Galanis,et al.  Analysis of a carbon dioxide transcritical power cycle using a low temperature source , 2009 .

[75]  Shenyi Wu,et al.  Innovations in vapour-absorption cycles , 2000 .

[76]  Mortaza Yari,et al.  A Novel Recompression S-CO2 Brayton Cycle with Pre-Cooler Exergy Utilization , 2010 .

[77]  J. Hornut,et al.  Experimental study of an innovative absorption heat transformer using partially miscible working mixtures , 2003 .

[78]  Jaroslav Pátek,et al.  Thermodynamic properties of the LiCl–H2O system at vapor–liquid equilibrium from 273 K to 400 K , 2008 .

[79]  Rosenberg J. Romero,et al.  Theoretical and experimental comparison of the performance of a single-stage heat transformer operating with water/lithium bromide and water/Carrol™ , 2002 .

[80]  E. Stefanakos,et al.  A REVIEW OF THERMODYNAMIC CYCLES AND WORKING FLUIDS FOR THE CONVERSION OF LOW-GRADE HEAT , 2010 .

[81]  A detailed analysis of water-vapour absorption in LiBr–H2O solution on a cooled horizontal tube , 2006 .

[82]  Fred W. Glover,et al.  ' s personal copy Continuous Optimization Finding local optima of high-dimensional functions using direct search methods , 2008 .

[83]  Dapeng Hu,et al.  Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair , 2011 .

[84]  Chris Manzie,et al.  Extremum-seeking control of a supercritical carbon-dioxide closed Brayton cycle in a direct-heated solar thermal power plant , 2013 .

[85]  Rajagopal Saravanan,et al.  Exergetic performance of eco friendly absorption heat transformer for seawater desalination , 2011 .

[86]  Lin Fu,et al.  A review of working fluids of absorption cycles , 2012 .

[87]  Wilfrido Rivera,et al.  Exergy analysis of a heat transformer for water purification increasing heat source temperature , 2010 .

[88]  Djallel Zebbar,et al.  Thermodynamic optimization of an absorption heat transformer , 2012 .

[89]  I. Horuz,et al.  A comparison between ammonia-water and water-lithium bromide solutions in absorption heat transformers , 2001 .