Universal rigidity on the line, point order

We show that universal rigidity of a generic bar-joint framework (G,p) in R1 depends on more than the ordering of the vertices. In particular, we construct examples of 1-dimensional generic frameworks with the same graph and ordering of the vertices, such that one is universally rigid and one is not. This answers, in the negative, a question of Jordán and Nguyen. Underlying our examples are insights about how universal rigidity behaves under projections. Using these ideas, we also give a simple proof that universal rigidity is invariant under affine transformations.

[1]  Robert Connelly,et al.  Iterative Universal Rigidity , 2015, Discret. Comput. Geom..

[2]  Walter Whiteley,et al.  Some matroids from discrete applied geometry , 1996 .

[3]  Robert Connelly,et al.  Generic Global Rigidity , 2005, Discret. Comput. Geom..

[4]  Tibor Jordán,et al.  On universally rigid frameworks on the line , 2015, Contributions Discret. Math..

[5]  Steven J. Gortler,et al.  Characterizing the Universal Rigidity of Generic Frameworks , 2014, Discret. Comput. Geom..

[6]  Steven J. Gortler,et al.  Characterizing generic global rigidity , 2007, Ad Hoc Networks.

[7]  Robert Connelly Combining globally rigid frameworks , 2011 .

[8]  Robert Connelly,et al.  Affine Rigidity and Conics at Infinity , 2016 .

[9]  Neil White,et al.  Skeletal rigidity of simplicial complexes, I , 1995, Eur. J. Comb..

[10]  R. Connelly Rigidity and energy , 1982 .

[11]  B. Roth,et al.  The rigidity of graphs , 1978 .