A viewpoint based approach to the visual exploration of trajectory

Abstract We present a new viewpoint-based approach to improving the exploration effects and efficiency of trajectory datasets. Our approach integrates novel trajectory visualization techniques with algorithms for selecting optimal viewpoints to explore the generated visualization. Both the visualization and the viewpoints will be represented in the form of KML, which can be directly rendered in most of off-the-shelf GIS platforms. By playing the viewpoint sequence and directly utilizing the components of GIS platforms to explore the visualization, the overview status, detailed information, and the time variation characteristics of the trajectories can be quickly captured. A case study and a usability experiment have been conducted on an actual public transportation dataset, justifying the effectiveness of our approach. Comparing with the basic exploration approach without viewpoints, we find our approach increases the speed of information retrieval when analyzing trajectory datasets, and enhances user experiences in 3D trajectory exploration.

[1]  Liping Di,et al.  Development of a Web-based visualization platform for climate research using Google Earth , 2012, Comput. Geosci..

[2]  William Wright,et al.  GeoTime Information Visualization , 2004, IEEE Symposium on Information Visualization.

[3]  Han-Wei Shen,et al.  Dynamic View Selection for Time-Varying Volumes , 2006, IEEE Transactions on Visualization and Computer Graphics.

[4]  Cláudio T. Silva,et al.  Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips , 2013, IEEE Transactions on Visualization and Computer Graphics.

[5]  Gennady L. Andrienko,et al.  Visual analytics of movement: An overview of methods, tools and procedures , 2013, Inf. Vis..

[6]  Erik Duval,et al.  Touching transport - a case study on visualizing metropolitan public transit on interactive tabletops , 2014, AVI.

[7]  Hans-Jörg Schulz,et al.  The Great Wall of Space-Time , 2012, VMV.

[8]  Christophe Hurter,et al.  Scalable Analysis of Movement Data for Extracting and Exploring Significant Places , 2013, IEEE Transactions on Visualization and Computer Graphics.

[9]  Slava Kisilevich,et al.  A conceptual framework and taxonomy of techniques for analyzing movement , 2011, J. Vis. Lang. Comput..

[10]  Dino Pedreschi,et al.  Interactive visual clustering of large collections of trajectories , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[11]  Christian Tominski,et al.  Visualization of Trajectory Attributes in Space–Time Cube and Trajectory Wall , 2014 .

[12]  Louise Barrett,et al.  Space Transformation for Understanding Group Movement , 2013, IEEE Transactions on Visualization and Computer Graphics.

[13]  Keith C. Clarke,et al.  Interactive Tag Maps and Tag Clouds for the Multiscale Exploration of Large Spatio-temporal Datasets , 2007, 2007 11th International Conference Information Visualization (IV '07).

[14]  Han-Wei Shen,et al.  View selection for volume rendering , 2005, VIS 05. IEEE Visualization, 2005..

[15]  Menno-Jan Kraak,et al.  The space - time cube revisited from a geovisualization perspective , 2003 .

[16]  Mats Lind,et al.  Evaluating 2D and 3D visualizations of spatiotemporal information , 2010, TAP.

[17]  Xiaoru Yuan,et al.  TripVista: Triple Perspective Visual Trajectory Analytics and its application on microscopic traffic data at a road intersection , 2011, 2011 IEEE Pacific Visualization Symposium.

[18]  Kwan-Liu Ma,et al.  Proximity-based visualization of movement trace data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.

[19]  Le Yu,et al.  Google Earth as a virtual globe tool for Earth science applications at the global scale: progress and perspectives , 2012 .

[20]  Mateu Sbert,et al.  Viewpoint Selection using Viewpoint Entropy , 2001, VMV.

[21]  Ming-Yuen Chan,et al.  Focus+Context Route Zooming and Information Overlay in 3D Urban Environments , 2009, IEEE Transactions on Visualization and Computer Graphics.

[22]  Jason Dykes,et al.  The Visual Exploration of Insurance Data in Google Earth , 2008 .

[23]  Heidrun Schumann,et al.  Stacking-Based Visualization of Trajectory Attribute Data , 2012, IEEE Transactions on Visualization and Computer Graphics.

[24]  Xiaoyu Chen,et al.  Fine-grained traffic state estimation and visualisation , 2014 .

[25]  Brian E. Perron,et al.  A Review of a Presentation Technology: Prezi , 2011 .

[26]  Jun Ma,et al.  A Unified Approach to Streamline Selection and Viewpoint Selection for 3D Flow Visualization , 2013, IEEE Transactions on Visualization and Computer Graphics.

[27]  William Wright,et al.  GeoTime Information Visualization , 2005, Inf. Vis..

[28]  Heidrun Schumann,et al.  3D information visualization for time dependent data on maps , 2005, Ninth International Conference on Information Visualisation (IV'05).

[29]  Andreas Kerren,et al.  MobilityGraphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering , 2016, IEEE Transactions on Visualization and Computer Graphics.

[30]  Keith C. Clarke,et al.  Interactive Visual Exploration of a Large Spatio-temporal Dataset: Reflections on a Geovisualization Mashup. , 2007, IEEE Transactions on Visualization and Computer Graphics.

[31]  Aijun Chen,et al.  Visualization of A-Train vertical profiles using Google Earth , 2009, Comput. Geosci..

[32]  Christophe Hurter,et al.  FromDaDy: Spreading Aircraft Trajectories Across Views to Support Iterative Queries , 2009, IEEE Transactions on Visualization and Computer Graphics.

[33]  Gennady L. Andrienko,et al.  Spatio-temporal aggregation for visual analysis of movements , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[34]  Siyuan Liu,et al.  Visual analysis of route diversity , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).